HCV – HCV Pressure Data #### Performance Notes For Pages 266 - 272G - $1.\Delta Ps$ is the difference in static pressure from inlet to discharge. - 2. Minimum ΔPs is the lowest inlet-to-discharge static pressure at which controls can be pressure independent. - 3. ΔPt is the difference in total pressure from inlet-to-discharge. - 4. Lw is the sound power level, re 10⁻¹² watts. ## Correction Factors For Minimum Overall Pressure Drop With Accessories | SIZE | 100-150 | 175-250 | 300-400 | |-----------------|---------|---------|---------| | Pressure Drop | ∆Ps | ∆Ps | ∆Ps | | Basic Assembly | 1.0 | 1.0 | 1.0 | | Attenuator | 1.1 | 2.1 | 6.8 | | 1 Row Coil | 1.03 | 2.0 | 6.4 | | 2 Row Coil | 2.06 | 3.75 | 12.0 | | Multi Discharge | 0.7 | 0.9 | 2.8 | | Round Discharge | 3.21 | 2.4 | 9.0 | #### $\Delta extsf{Ps}$ For Optional Electric Heater Banks | Size | ∆Ps (Pa) | | | |---------|----------|--|--| | 100-150 | 2.2 | | | | 175-225 | 2.1 | | | | 250 | 1.0 | | | | | 1.5 | | | | 350 | 1.5 | | | | 400 | 1.1 | | | Above static pressure ΔPs to be added to the minimum ΔPs from the performance table on this page. These are approximations only as actual ΔPs will depend on the number of elements used. ### To obtain minimum ΔPs for basic assembly with accessories: - 1. From factor table, start with 1.0 for the basic assembly. - 2. Select correction factor for each accessory. Add all factors together, including 1.0 for the basic assembly. - 3. Multiply the minimum ΔPs from the performance table on this page by the sum of the factors to obtain the overall minimum ΔPs . #### Example: A 150 Circular Inlet Assembly with attenuator, 2 row coil and round discharge handles $0.189\,\text{m}^3/\text{s}$. | | ∆Ps | |-----------------|------| | Basic Assembly | 1.0 | | Attenuator | 1.1 | | 2 Row Coil | 2.06 | | Round Discharge | 3.21 | | | 7.37 | From the perfomance table, minimum $\Delta Ps=34$ Pa. 7.37 x 34 = 251 Pa minimum ΔPs with options added. | | VOLUME
m³/s | MIN ∆Ps | | MIN ∆Pt | | |------------------|----------------|----------|----------|------------|-----------| | CASE SIZE | | Circular | Square | Circular | Square | | | | Inlet | Inlet | Inlet | Inlet | | HCV 100 | 0.040 | 9 | 6 | 23 | 17 | | | 0.055 | 16 | 12 | 44 | 32 | | | 0.070 | 27 | 19
20 | 72
400 | 52 | | | 0.085
0.100 | 39
54 | 28
39 | 106
146 | 76
105 | | | 0.100 | 54
5 | 39 | 146 | 102 | | HCV 125 | 0.030 | | 8 | 31 | 20 | | | 0.100 | 22 | 14 | 56 | 35 | | 1101 120 | 0.125 | 31 | 20 | 84 | 53 | | | 0.150 | 44 | 28 | 121 | 76 | | | 0.080 | 8 | 6 | 17 | 12 | | | 0.110 | 14 | 10 | 31 | 22 | | HCV 150 | 0.140 | 21 | 15 | 49 | 35 | | | 0.170 | 28 | 20 | 70 | 50 | | | 0.200 | 37 | 27 | 95 | 68 | | | 0.120 | 5 | 4 | 16 | 12 | | | 0.165 | 10 | 8 | 31 | 23 | | HCV 175 | 0.210 | 15 | 11 | 49 | 37 | | | 0.255 | 20 | 15 | 70 | 53 | | | 0.300 | 27 | 20 | 96 | 72 | | | 0.150 | 4 | 3 | 13 | 8 | | | 0.200 | 8 | 5 | 23 | 15 | | HCV 200 | 0.250 | 12 | 8 | 36 | 23 | | | 0.300 | 17 | 11 | 52 | 33 | | | 0.350 | 22 | 14 | 69 | 44 | | | 0.200 | 4 | 3 | 11 | 8 | | HCV 22F | 0.275 | 7 | 5 | 21 | 15
25 | | HCV 225 | 0.350
0.425 | 12 | 9 | 35
49 | 25
35 | | | 0.425 | 16
22 | 12
16 | 49
68 | 35
49 | | | 0.350 | 7 | 5 | 17 | 43
12 | | | 0.350 | 13 | 9 | 32 | 23 | | HCV 250 | 0.450 | 19 | 13 | 50 | 36 | | | 0.550 | 27 | 19 | 74 | 53 | | | 0.625 | 35 | 25 | 96 | 68 | | | 0.400 | 4 | 6 | 15 | 12 | | | 0.550 | 8 | 6 | 28 | 22 | | HCV 300 | 0.700 | 14 | 11 | 47 | 36 | | | 0.850 | 19 | 15 | 68 | 52 | | | 1.000 | 26 | 20 | 93 | 72 | | | 0.600 | 4 | 3 | 15 | 10 | | | 0.825 | 6 | 4 | 26 | 18 | | HCV 350 | 1.050 | 9 | 6 | 41 | 28 | | | 1.275 | 13 | 9 | 61 | 42 | | | 1.500 | 20 | 14 | 86 | 59 | | | 0.750 | 3 | 2 | 15
27 | 9 | | HCV 400 | 1.000 | 5 | 3 | 27 | 17
26 | | | 1.250 | 8
13 | 5
8 | 42
62 | 26
38 | | | 1.500
1.900 | 13
25 | 8
16 | 62
104 | 38
64 | | HCV
600 x 400 | 1.250 | LJ | 4 | 104 | 10 | | | 2.000 | | 11 | | 28 | | | 2.500 | | 16 | | 42 | | | 3.000 | | 24 | 7 | 61 | | | 3.750 | | 40 | | 98 |