CMP-A - Ceiling Multi Pattern Diffuser (Aluminium) ### Model: CMP-A Ceiling Multi Pattern – Aluminium The Series CMP-A diffusers are a Louver Face Ceiling Diffuser of extruded aluminium construction, with removable core, available in a range of sizes and air distribution patterns, to suit numerous and varied requirements. The Series CMP-A is a light weight alternative to the well established CMP-S louver face diffuser which has been an industry stable for many years. ### Construction Series CMP-A diffusers are ruggedly constructed entirely of aluminium, are lightweight and have no heavy cast, or moulded components. Precision combination corner gussets and braces keep mitres to a hairline and aluminium rivets hold the core components rigidly together, eliminating the possibility of warping, flexing, or rattling. Panel diffusers (Type 2 on page 144D), are mechanically secured to steel panels with the Unique Holyoake mounting pins, eliminating gaps and producing a super-fine junction between panel and extrusion. #### Installation The diffusers frame assembly is installed in the ceiling opening and attached and sealed to the supply duct. The extensive range of cores, all snap in to the frame surrounds, with nickel plated spring steel thumb clips. #### **Finish** All Holyoake aluminium diffusers receive a three stage preparation, prior to final finishing; cleaning, chemical etch and drying. This preparation ensures powder coat adhesion and precludes powder peeling, or flaking after installation. Standard colour is Holyoake White. #### **Features** - All aluminium construction. - Precision mitred corners. - · Selection of frame styles. - Variety of throw patterns. - Snap-in interchangeable cores. - Tough powder coat finish. - Lightweight Premi-Aire™ and galvanised cushion head boxes available. **Ceiling Diffuser** Due to a policy of continuous development and improvement the right is reserved to supply products which may differ slightly from those illustrated and described in this publication. # Reflected Ceiling Plan Views – CMP ## Model: CMP and CMPH Core Styles ^{*} Square core patterns. Diffusers are only available in standard sizes as listed in performance data. # CMP-A – Ceiling Multi Pattern Diffuser (Aluminium) # Model: CMP-A — Ceiling Multi Pattern Diffuser (Aluminium) ### Standard Flange Frame. Designed for surface mounting on all types of ceilings, as well as lay-in ceiling tile applications. ### Construction #### **Aluminium:** - 0.75mm extruded 6063-T5 aluminium outer frame. - 0.55mm removable aluminium core. Note: A Steel construction CMP-S version may be available, please contact your local Holyoake branch. ### Panel Diffuser. Lay-in type for installation in suspended "T-Rail" type ceilings. Standard panel overall size is 595×595 to suit a 600×600 grid. Size 450×450 has an overall face size of 595×595 . It therefore does not require a panel in a 600 grid and fits "T-Rail" spacing with clearance*. ### Construction #### **Aluminium:** - 0.75mm extruded 6063-T5 aluminium outer frame. - 0.55mm removable aluminium core. - * Note: 0.75 mm Steel Panel on CMP-A Type 2. Product weights are shown on page 150D. # Ceiling Multi Pattern Diffuser (Aluminium) – CMP-A # Model: CMP-A — Ceiling Multi Pattern Diffuser (Aluminium) ### **Drop Frame.** Lowers the face of the diffuser below the ceiling line. Can be used to reduce smudging, or against obstacles to minimise drafts. Can be supplied in any height from 50 - 81mm, but unless otherwise specified, frame height of 50 mm will be furnished. Special order only. ### Construction ### **Aluminium:** 0.75mm extruded 6063-T5 aluminium outer frame. 0.55mm removable aluminium core. ### **Bevelled Drop Frame.** Smartly styled bevelled type surround reduces ceiling smudging. For all surface mounting applications. Special order only. ### Construction #### **Aluminium:** 0.75mm extruded 6063-T5 aluminium outer frame. 0.55mm removable aluminium core. Product weights are shown on page 150D. # P - Octave Band Sound Data ### Model: CMP Supply | L | P | OCTAVE BANDS, Lw | | | | | | | | | | | |----|---------|------------------|-------------|-------------|-------------|-------------|-------------|--|--|--|--|--| | NC | A-Scale | 125 | 250 | 500* | 1000 | 2000 | 4000 | | | | | | | 15 | 19 | 38-40-42-44 | 30-32-34-35 | 27-27-27-27 | 25-25-25-25 | 21-19-17-15 | 9-5 – – | | | | | | | 20 | 24 | 40-42-44-46 | 33-35-37-38 | 31-31-31-31 | 30-30-30-30 | 27-25-23-21 | 17-13-9 – | | | | | | | 25 | 29 | 43-45-47-49 | 37-39-41-42 | 35-35-35-35 | 35-35-35-35 | 32-30-28-26 | 24-20-16-11 | | | | | | | 30 | 34 | 46-48-50-52 | 40-42-44-45 | 40-40-40-40 | 39-39-39-39 | 37-35-33-31 | 31-27-23-18 | | | | | | | 35 | 39 | 49-51-53-55 | 44-46-48-49 | 44-44-44 | 44-44-44 | 42-40-38-36 | 38-34-30-25 | | | | | | | 40 | 44 | 52-54-56-58 | 48-50-52-53 | 48-48-48-48 | 49-49-49-49 | 47-45-43-41 | 45-41-37-32 | | | | | | | 45 | 49 | 55-57-59-61 | 51-53-55-56 | 53-53-53 | 54-54-54-54 | 52-50-48-46 | 51-47-43-38 | | | | | | | 50 | 54 | 58-60-62-64 | 55-57-59-60 | 57-57-57 | 59-59-59 | 57-55-53-51 | 56-52-48-43 | | | | | | ^{*} Add 4dB for Aluminium Diffuser 1.49m² Duct 0.372m² Duct 0.092m² Duct 0.023m² Duct ## Model: CMP Return | L | P | | OCTAVE BANDS, Lw | | | | | | | | | | |----|---------|-------------|------------------|-------------|-------------|-------------|-------------|--|--|--|--|--| | NC | A-Scale | 125* | 250 | 500 | 1000 | 2000 | 4000 | | | | | | | 15 | 18 | 24-29-34-40 | 26-27-28-29 | 25-26-27-28 | 25-25-25-25 | 22-22-22-21 | 18-17-16-16 | | | | | | | 20 | 23 | 28-33-38-44 | 30-31-32-33 | 29-30-31-32 | 30-30-30-30 | 27-27-27-26 | 24-23-22-22 | | | | | | | 25 | 28 | 33-38-43-49 | 35-36-37-38 | 34-35-36-37 | 35-35-35-35 | 32-32-31-30 | 29-28-27-27 | | | | | | | 30 | 33 | 37-42-47-53 | 39-40-41-42 | 38-39-40-41 | 39-39-39-39 | 37-37-36-35 | 35-34-33-33 | | | | | | | 35 | 38 | 41-46-51-57 | 43-44-45-46 | 42-43-44-45 | 44-44-44-44 | 42-42-41-40 | 41-40-39-39 | | | | | | | 40 | 43 | 46-51-56-62 | 48-49-50-51 | 47-48-49-50 | 49-49-49-49 | 47-46-45-44 | 46-45-44-44 | | | | | | | 45 | 48 | 50-55-60-66 | 52-53-54-55 | 51-52-53-54 | 54-54-54 | 52-51-50-49 | 51-51-50-50 | | | | | | | 50 | 53 | 54-59-64-70 | 56-57-58-59 | 55-56-57-58 | 59-59-59-59 | 57-56-55-54 | 56-56-55-55 | | | | | | ^{*} Subtract 9dB for Aluminium Diffuser 1.49m² Duct 0.372m² Duct 0.092m² Duct 0.023m² Duct ## Notes on Sound Performance Data The NC values are obtained from the performance tables on pages 148D to 157D, which are based on 8 dB room attenuation re 10^{-12} watts. The octave band dB values are sound power levels (Lw) re 10^{-12} watts. In the tables above, four values are shown for each octave band and NC value, with the first value for a duct area of $0.023 \, \text{m}^2$, second $0.092 \, \text{m}^2$, third $0.372 \, \text{m}^2$ and fourth for $1.49 \, \text{m}^2$. The A-scale dB values are based on a 8 dB room attenuation re 10^{-12} watts. Lp - Sound pressure level, dB re 0.0002 microbars. Lw - Sound power level, dB re 10^{-12} watts. ### **Example** A 300 x 300 CMP supplies $0.378 \, \text{m}^3/\text{s}$. List the complete sound analysis for this condition. (A 300 x 300 CMP has a duct area of $0.090 \, \text{m}^2$). The Performance Table on Page 148D shows that a 300×300 CMP supplying 0.378 m³/s satisfies an NC35. The CMP Supply table above lists the following A-scale and octave band sound levels for an NC35 and 0.092 m² duct. | dB, | Lp | Octave Bands - dB, Lw | | | | | | | | |-----|----|-----------------------|-----|-----|------|------|------|--|--| | NC | Α | 125 | 250 | 500 | 1000 | 2000 | 4000 | | | | 35 | 39 | 51 | 46 | 44 | 44 | 40 | 34 | | | Above octave band sound power levels (Lw) plotted (top curve). The lower curve that satisfies an NC 35 was obtained by subtracting 8 dB (Room Attenuation) from each octave band sound power level. # Performance Data CMP and CMPH — CMP ## **Notes on Throw** Performance Data - 1. The CMP and CMPH Performance Data in the tables on the following pages (Pages 148D - 157D and 160D - 165D) applies when the outlet is mounted near the ceiling with ceiling effect. - 2. Where no ceiling effect is present the horizontal throw will be about 25% less than shown in the tables. - 3. The subsequent downward projection should be taken into account. ## **Effects of Mounting Position on Air Pattern** | RECOMMENDED MAXIMUM AIR FLOW | | | | | | | | | | | |------------------------------|-------|-------|-------|-------|-------|-------|--|--|--|--| | Ceiling Height, m. | 2.40 | 2.70 | 3.00 | 3.60 | 4.20 | 4.80 | | | | | | Air Flow (m³/s) per side | 0.095 | 0.165 | 0.260 | 0.425 | 0.660 | 0.755 | | | | | This data is based on 12°C Δt (temperature differential) during cooling. ## General Performance Notes 1. Pressure: All pressures are in Pa (N/m²) > TP = Total Pressure -SP = Negative Static Pressure 2. Throw: Maximum throws are to a terminal velocity of 0.25 m/s, middle to 0.5 m/s, and minimum to $0.75 \, \text{m/s}.$ 3. Sound: The NC values are based on a room absorption of 8 dB, re 10^{-12} watts and one steel diffuser. For aluminium diffusers, apply the following corrections to the listed data: | | NC = Listed + 3 | |---------|----------------------| | Supply: | TP = Listed x 1.5 | | | THROW = Listed x 1.0 | | | NC = Listed + 2 | | Return: | −SP = Listed x 1.0 | CMPH: Where table shows -, NC is below 20. 4. Return Factors: If the unit is used as a return inlet, the performance data is obtained by applying the return factors shown on each table in the following manner: - a. Sound: Add the factor shown to the NC value listed. - b. Negative Static Pressure: Multiply the return factor by the total pressure #### Return Example: 150 x 150 CMP with 0.071 m³/s being returned through the unit. Return NC = 20 + 1 = 21 Return Pressure (-SP) = TP x 1.1 = 25 (1.1) = 27.5 Pa (N/m²) 5. Size in mm: This is the Diffuser Listed Duct Size or Nominal Neck
Opening ## **Symbols** | m³/s | Cubic metres per second | Pt | Total pressure Pa (= Ps + Pv) | |----------|---------------------------------------|------------|--| | m/s | Metres per second | Δ t | Temperature differential, room to supply | | Vk | Outlet velocity, m/s | Throw | Distance air travels from diffuser to a given Vt. | | Vt | Air stream terminal velocity, m/s | | Tables show throws to Vts of 0.75 (min); | | Ak | Diffuser or register net jet area, m² | | 0.5 and 0.25 (max) m/s. | | AD or An | Inlet duct or neck area | NC | Noise criteria. Ratings are based on sound | | Ps | Static pressure, Pa | | power level (SWL) re. 10 ⁻¹² watts minus 8 dB | | Pv | Velocity pressure, Pa | | room attenuation in all frequency bands. | #### Note All ceiling diffusers, seismic restraints are required, but not supplied. | Size | | Patterns | Neck Vel m/s | 1.57 | 2.10 | 2.62 | 3.15 | 3.67 | 4.19 | 4.72 | |-------------------------------|-------------------|-------------------|----------------------|---|---|---|---|---|---|---| | in mm | Return | NC+1 | TP Pa Total m³/s | 6
0.036 | 11
0.047 | 18
0.059 | 25
0.071 | 35
0.083 | 45
0.094 | 57
0.106 | | | Factors | -SP=1.1TP | NC | -
А В | 7
A B | 14
A B | 20
A B | 24
A B | 28
A B | 32
A B | | 150
x
150 | | 41 | m³/s side
throw m | 0.009
1.2
1.5
2.1 | 0.012
1.5
1.8
2.4 | 0.015
1.8
2.1
2.7 | 0.018
1.8
2.1
3.1 | 0.020
2.1
2.4
3.4 | 0.024
2.1
2.4
3.4 | 0.027
2.4
2.7
3.7 | | | | ♣ 36 | m³/s side
throw m | 0.009 0.013
1.2 1.5
1.5 2.1
2.1 3.1 | 0.012 0.018
1.5 1.8
1.8 2.4
2.4 3.4 | 0.015 0.022
1.8 2.1
2.1 2.7
2.7 4.0 | 0.018 0.026
1.8 2.1
2.1 3.1
3.1 4.3 | 0.201 0.031
2.1 2.4
2.4 3.4
3.4 4.6 | 0.024 0.036
2.1 2.4
2.4 3.4
3.4 4.9 | 0.027 0.040
2.4 2.7
2.7 3.7
3.7 5.2 | | | | A 34 * | m³/s side
throw m | 0.018 0.009
1.8 1.2
2.4 1.5
3.1 2.4 | 0.024 0.012
2.1 1.5
2.7 1.8
3.7 2.7 | 0.029 0.015
2.4 1.8
3.1 2.1
4.3 3.1 | 0.036 0.018
2.7 1.8
3.4 2.1
4.6 3.4 | 0.041 0.021
2.7 2.1
3.7 2.4
4.9 3.7 | 0.047 0.024
3.1 2.1
4.0 2.4
5.2 4.0 | 0.053 0.027
3.4 2.4
4.3 2.7
5.5 4.3 | | AD
0.023
m ² | 21 | 51 | m³/s side
throw m | 0.018
2.1
2.4
3.4 | 0.024
2.4
2.7
4.0 | 0.029
2.7
3.1
4.6 | 0.036
3.1
3.4
4.9 | 0.042
3.4
3.7
5.2 | 0.049
3.4
4.0
5.5 | 0.053
3.7
4.3
6.1 | | | | 11 | m³/s side
throw m | 0.035
2.4
3.1
4.3 | 0.047
2.7
3.4
4.9 | 0.060
3.1
4.0
5.5 | 0.071
3.4
4.3
6.1 | 0.083
3.7
4.6
6.4 | 0.094
4.0
4.9
7.0 | 0.107
4.3
5.2
7.3 | | | Return
Factors | NC+3
-SP=1.3TP | Total m³/s
NC | 0.080
-
A B | 0.106
11
A B | 0.133
18
A B | 0.160
24
A B | 0.186
28
A B | 0.212
32
A B | 0.239
36
A B | | 225
x
225 | | 41 | m³/s side
throw m | 0.020
1.5
1.8
2.7 | 0.026
1.8
2.1
3.1 | 0.033
2.1
2.4
3.4 | 0.040
2.1
2.7
3.7 | 0.046
2.4
2.7
4.0 | 0.053
2.4
3.1
4.3 | 0.059
2.7
3.4
4.6 | | 223 | | 36 | m³/s side
throw m | 0.020 0.030
1.5 2.1
1.8 2.7
2.7 3.7 | 0.026 0.040
1.8 2.4
2.1 3.1
3.1 4.3 | 0.033 | 0.040 0.060
2.1 3.1
2.7 3.7
3.7 5.2 | 0.046 0.070
2.4 3.4
2.7 4.0
4.0 5.5 | 0.053 0.080
2.4 3.4
3.1 4.3
4.3 6.1 | 0.060 0.090
2.7 3.7
3.4 4.6
4.6 6.4 | | | | 34 * | m³/s side
throw m | 0.034 0.023
2.1 2.1
2.7 2.4
3.7 3.4 | 0.044 0.031
2.4 2.4
3.1 2.7
4.3 4.0 | 0.056 0.039
2.7 2.7
3.4 3.1
4.9 4.6 | 0.067 0.046
3.1 3.1
3.7 3.4
5.2 4.9 | 0.078 0.054
3.4 3.4
4.0 3.7
5.5 5.2 | 0.089 0.062
3.4 3.4
4.3 4.0
6.1 5.5 | 0.100 0.070
3.7 3.7
4.6 4.3
6.4 6.1 | | AD
0.051
m ² | 21 | 51 | m³/s side
throw m | 0.040
2.7
3.1
4.6 | 0.053
3.1
3.7
5.2 | 0.067
3.4
4.3
5.8 | 0.080
3.7
4.6
6.4 | 0.093
4.0
4.9
6.7 | 0.106
4.3
5.2
7.3 | 0.119
4.6
5.5
7.9 | | | | 11 | m³/s side
throw m | 0.080
3.4
4.3
5.8 | 0.106
4.0
4.9
6.7 | 0.133
4.6
5.5
7.6 | 0.160
4.9
6.1
8.2 | 0.186
5.2
6.4
8.8 | 0.212
5.5
7.0
9.5 | 0.239
6.1
7.3
10.1 | | | Return
Factors | NC+5
-SP=1.4TP | Total m³/s
NC | 0.142
-
A B | 0.189
14
A B | 0.236
21
A B | 0.283
27
A B | 0.330
31
A B | 0.378
35
A B | 0.425
39
A B | | 300
X
300 | . 40.0.0 | √ △ △ △ | m³/s side
throw m | 0.035
1.8
2.4
3.1 | 0.047
2.1
2.7
3.7 | 0.059
2.4
3.1
4.3 | 0.071
2.7
3.4
4.5 | 0.083
2.7
3.7
4.9 | 0.094
3.1
4.0
5.2 | 0.106
3.4
4.3
5.5 | | 300 | | 36 | m³/s side
throw m | 0.035 0.053
1.8 2.4
2.4 3.1
3.1 4.3 | 0.047 0.071
2.1 2.7
2.7 3.4
3.7 4.9 | 0.059 0.088
2.4 3.1
3.1 4.0
4.3 5.5 | 0.071 0.106
2.7 3.4
3.4 4.3
4.6 6.1 | 0.083 0.124
2.7 3.7
3.7 4.6
4.9 5.4 | 0.094 0.142
3.1 4.0
4.0 4.9
5.2 7.0 | 0.106 0.160
3.4 4.3
4.3 5.2
5.5 7.3 | | | | B 34 * | m³/s side
throw m | 0.053 0.044
2.4 2.4
3.1 3.1
4.3 4.3 | 0.071 0.059
2.7 2.7
3.4 3.4
4.9 4.9 | 0.088 0.074
3.1 3.1
4.0 4.0
5.5 5.5 | 0.106 | 0.124 | 0.142 0.118
4.0 4.0
4.9 4.9
7.0 7.0 | 0.160 0.133
4.3 4.3
5.2 5.2
7.3 7.3 | | AD
0.090
m ² | 21 | 51 | m³/s side
throw m | 0.071
3.1
3.7
5.2 | 0.094
3.7
4.3
6.1 | 0.118
4.3
4.9
7.0 | 0.142
4.6
5.2
7.6 | 0.165
4.9
5.5
7.9 | 0.189
5.2
6.1
8.5 | 0.212
5.5
6.4
9.2 | | | | 11 | m³/s side
throw m | 0.142
4.0
4.9
7.0 | 0.189
4.6
5.5
7.9 | 0.236
5.2
6.4
9.2 | 0.283
5.5
6.7
9.8 | 0.390
6.1
7.3
10.4 | 0.378
6.4
7.6
11.3 | 0.425
7.0
8.2
11.9 | | | Return
Factors | NC+5
-SP=1.9TP | Total m³/s
NC | 0.220
7
A B | 0.295
16
A B | 0.368
23
A B | 0.441
29
A B | 0.515
33
A B | 0.590
37
A B | 0.661
41
A B | | 375
X | | √ 41 | m³/s side
throw m | 0.055
2.1
2.7 | 0.074
2.4
3.1 | 0.092
2.7
3.4 | 0.110
3.1
3.7 | 0.129
3.4
4.0 | 0.147
3.4
4.3 | 0.165
3.7
4.6 | | 375 | | 36 | m³/s side
throw m | 3.7
0.055 0.083
2.1 3.1
2.7 3.7
3.7 5.2 | 4.3
0.074 0.111
2.4 3.7
3.1 4.3
4.3 6.1 | 4.9
0.092 0.138
2.7 4.3
3.4 4.9
4.9 7.0 | 5.2
0.110 0.166
3.1 4.6
3.7 5.2
5.2 7.6 | 5.5
0.129 0.193
3.3 4.9
4.0 5.5
5.5 7.9 | 6.1
0.147 0.221
3.4 5.2
4.3 6.1
6.1 8.5 | 6.4
0.165 0.249
3.7 5.5
4.6 6.4
6.4 9.2 | | | | B 34 * | m³/s side
throw m | 0.077 0.072
2.7 2.7
3.4 3.4 | 0.103 0.096
3.1 3.1
4.0 4.0 | 0.129 0.119
3.4 3.4
4.6 4.6 | 0.154 0.144
3.7 3.7
4.9 4.9 | 0.180 0.158
4.0 4.0
5.2 5.2 | 0.206 0.191
4.3 4.3
5.5 5.5 | 0.232 0.215
4.6 4.6
6.1 6.1 | | AD
0.141
m ² | 21 | ▼B
► 51 | m³/s side
throw m | 4.9 4.9
0.111
3.7
4.6 | 5.5 5.5
0.147
4.3
5.2 | 6.4 6.4
0.184
4.9
5.8 | 6.7 6.7
0.221
5.2
6.4 | 7.3 7.3
0.258
5.5
6.7 | 7.6 7.6
0.295
6.1
7.3 | 8.2 8.2
0.330
6.4
7.9 | | | • | 11 | m³/s side
throw m | 6.4
0.220
4.6
5.5
7.9 | 7.3
0.295
5.2
6.4
9.2 | 8.2
0.368
5.8
7.3
10.4 | 9.2
0.441
6.4
7.9
11.3 | 9.8
0.515
6.7
8.5
12.2 | 10.4
0.590
7.3
9.2
12.8 | 11.0
0.661
7.9
9.8
13.7 | All ceiling diffusers, seismic restraints are required, but not supplied. *These cores are constructed to give as near as possible equal air flow in A & B directions. | Size | | Patterns | Neck Vel m/s | | 2.10 | 2.62 | 3.15 | 3.67 | 4.19 | 4.72 | |-------------------------------|---------------------|---|---|--|--
--|--|---|---|---| | in mm | Return | NC+7 | TP Pa
Total m³/s | 6
0.319 | 11
0.425 | 18
0.531 | 25
0.637 | 35
0.734 | 45
0.850 | 57
0.956 | | | Factors | -SP=2.2TP | NC | 9
A B | 18
A B | 25
A B | 31
A B | 35
A B | 39
A B | 43
A B | | 450
x
450 | | 41 | m³/s side
throw m | 0.079
2.4
3.1
4.3 | 0.106
2.7
3.4
4.9 | 0.132
3.1
4.0
5.5 | 0.159
3.4
4.3
6.1 | 0.188
3.7
4.6
6.4 | 0.212
4.0
4.9
7.0 | 0.238
4.3
5.2
7.3 | | | | ♣ 36 | m³/s side
throw m | 0.079 0.119
2.4 3.4
3.1 4.3
4.3 5.8 | 0.106 0.159
2.7 4.0
3.4 4.9
4.9 6.7 | 0.132 0.199
3.1 4.6
4.0 5.5
5.5 7.6 | 0.159 0.239
3.4 4.9
4.3 6.1
6.1 8.2 | 0.186 0.279
3.7 5.2
4.6 6.4
6.4 8.8 | 0.212 0.319
4.0 5.5
4.9 7.0
7.0 9.5 | 0.239 0.359
4.3 6.1
5.2 7.3
7.3 10.1 | | AD | | 34 * | m³/s side
throw m | 0.106 0.106
3.4 3.4
4.3 4.3
5.8 5.8
0.159 | 0.142 0.142
4.0 4.0
4.9 4.9
6.7 6.7
0.212 | 0.177 0.177
4.6 4.6
5.5 5.5
7.6 7.6
0.265 | 0.212 0.212
4.9 4.9
6.1 6.1
8.3 8.3
0.318 | 0.248 0.248
5.2 5.2
6.4 6.4
8.8 8.8
0.371 | 0.283 0.283
5.5 5.5
7.0 7.0
9.5 9.5
0.425 | 0.319 0.319
6.1 6.1
7.3 7.3
10.1 10.1
0.477 | | AD
0.202
m² | 21 | 51 | m³/s side
throw m | 4.0
4.9
7.0 | 4.6
5.5
7.9 | 5.2
6.4
9.2
0.531 | 5.5
6.7
9.8
0.638 | 6.1
7.3
10.4 | 6.4
7.6
11.3 | 7.0
8.2
11.9 | | | D. d | □ 11 | m³/s side
throw m | 4.9
6.1
8.5 | 5.8
7.0
9.8
0.578 | 6.7
7.9
11.3 | 7.0
8.5
11.9 | 7.6
9.2
12.8 | 8.2
10.1
13.7
1.157 | 8.8
10.7
14.6 | | | Return
Factors | NC+9
-SP=2.7TP | Total m³/s
NC | 11
A B | 20
A B | 27
A B | 33
A B | 37
A B | 41
A B | 45
A B | | 525
x
525 | | 41 | m³/s side
throw m | 0.109
2.7
3.4
4.9 | 0.144
3.1
4.0
5.5 | 0.180
3.4
4.6
6.4 | 0.217
3.7
4.9
6.7 | 0.253
4.0
5.2
7.3 | 0.289
4.3
5.5
7.6 | 0.325
4.6
6.1
8.2 | | | | ♣ 36 | m³/s side
throw m | 0.109 0.163
2.7 3.7
3.4 4.6
4.9 6.4 | 0.144 0.217
3.1 4.3
4.0 5.2
5.5 7.3 | 0.180 0.271
3.4 4.9
4.6 5.8
6.4 8.2 | 0.217 0.325
3.7 5.2
4.9 6.4
6.7 9.2 | 0.235 0.379
4.0 5.5
5.2 6.7
7.3 9.8 | 0.289 0.423
4.3 6.1
5.5 7.3
7.6 10.4 | 0.325 0.486
4.6 6.4
6.1 7.9
8.2 11.0 | | | | 34 * | m³/s side
throw m | 0.139 | 0.186 0.194
4.0 4.0
4.9 4.9
6.7 6.7 | 0.232 0.243
4.6 4.6
5.5 5.5
7.6 7.6
0.361 | 0.279 0.292
4.9 4.9
6.1 6.1
8.2 8.2 | 0.325 | 0.369 0.389
5.5 5.5
7.0 7.0
9.5 9.5
0.578 | 0.418 | | AD
0.276
m ² | 21 | 51 | m ³ /s side
throw m
m ³ /s side | 0.216
4.6
5.5
7.9
0.432 | 0.289
5.2
6.4
9.2
0.578 | 5.8
7.3
10.4
0.723 | 0.433
6.4
7.9
11.3 | 0.505
6.7
8.5
12.2
1.010 | 7.3
9.2
12.8 | 7.9
9.8
13.7 | | | | 11 | throw m | 5.5
7.0 | 6.4
7.9 | 7.3
9.2 | 7.9
9.8 | 8.5
10.4 | 9.2
11.3 | 9.8
11.9 | | | D. d | NC 0 | Total m ³ /a | 9.5
0.566 | 11.0
0.755 | 12.5 | 13.4 | 14.6 | 15.6 | 16.5 | | | Return
Factors | NC+9
-SP=2.83TP | Total m³/s
NC | 0.566
12 | 11.0
0.755
21
A B | 0.944
28 | 1.130
34 | 14.6
1.320
38
A B | • | 16.5
1.700
46 | | 600
x
600 | | | | 0.566 | 0.755
21 | 0.944
28 | 1.130
34 | 1.320
38 | 15.6
1.510
42 | 16.5
1.700
46 | | x | | -SP=2.83TP | MC m³/s side throw m m³/s side throw m | 0.566
12
A B
0.142
3.1
3.7
5.2
0.142 0.212
3.1 4.0
3.7 4.9
5.2 7.0 | 0.755
21
A B
0.189
3.7
4.3
6.1
0.189 0.280
3.7 4.6
4.3 5.5
6.1 7.9 | 0.944
28
A B
0.236
4.3
4.9
7.0
0.236
0.354
4.3
5.2
4.9
6.4
7.0
9.2 | 1.130
34
A B
0.283
4.6
5.2
7.6
0.283
0.425
4.6
5.5
5.5
5.2
6.7
7.6
9.8 | 1.320
38
A B
0.330
4.9
5.5
7.9
0.330 0.496
4.9 6.1
5.5 7.3
7.9 10.4 | 15.6 1.510 42 A B 0.378 5.2 6.1 8.5 0.378 0.567 5.2 6.4 6.1 7.6 8.5 11.3 | 16.5
1.700
46
A B
0.425
5.5
6.4
9.2
0.425
0.538
5.5 7.0
6.4 8.2
9.2 11.9 | | x
600 | | -SP=2.83TP -SP=2.83TP -SP=2.83TP | m³/s side throw m m³/s side throw m m³/s side throw m | 0.566 12 A B 0.142 3.1 3.7 5.2 0.142 0.212 3.1 4.0 3.7 4.9 5.2 7.0 0.213 0.177 4.0 3.7 4.9 4.6 7.0 6.4 | 0.755 21 A B 0.189 3.7 4.3 6.1 0.189 0.280 3.7 4.6 4.3 5.5 6.1 7.9 0.283 0.236 4.6 4.3 5.5 5.5 5.2 7.9 7.3 | 0.944
28
A B
0.236
4.3
4.9
7.0
0.236
0.354
4.3
5.2
4.9
6.4
7.0
9.2
0.354
0.295
5.2
4.9
6.4
7.0
9.2
0.354
9.2
8.3
8.3
8.4
9.2
8.3
8.4
9.2
8.3
8.4
9.2
8.3
8.4
9.2
8.3
8.4
9.2
8.4
9.2
8.4
9.2
8.4
9.2
8.4
9.2
8.4
9.2
8.4
9.2
8.4
9.2
8.4
9.2
8.4
9.2
8.4
9.2
8.4
9.2
8.4
9.2
8.4
9.2
8.4
9.4
9.4
9.4
9.4
9.4
9.4
9.4
9 | 1.130
34
A B
0.283
4.6
5.2
7.6
0.283 0.425
4.6 5.5
5.2 6.7
7.6 9.8
0.425 0.354
5.5 5.2
6.7 6.4
9.8 9.2 | 1.320
38
A B
0.330
4.9
5.5
7.9
0.330 0.496
4.9 6.1
5.5 7.3
7.9 10.4
0.496 0.413
6.1 5.5
7.3 6.7
10.4 9.8 | 15.6 1.510 42 A B 0.378 5.2 6.1 8.5 0.378 0.567 5.2 6.4 6.1 7.6 8.5 11.3 0.567 0.472 6.4 6.1 7.6 7.3 11.3 10.4 | 16.5 1.700 46 A B 0.425 5.5 6.4 9.2 0.425 0.638 5.5 7.0 6.4 8.2 9.2 11.9 0.638 0.531 7.0 6.4 8.2 7.9 11.9 11.0 | | x | | -SP=2.83TP 41 A 36 | m ³ /s side throw m m ³ /s side throw m m ³ /s side throw m | 0.566 12 A B 0.142 3.1 3.7 5.2 0.142 0.212 3.1 4.0 3.7 4.9 5.2 7.0 0.213 0.177 4.0 3.7 4.9 4.6 | 0.755 21 A B 0.189 3.7 4.3 6.1 0.189 0.280 3.7 4.6 4.3 5.5 6.1 7.9 0.283 0.236 4.6 4.3 5.5 5.2 | 0.944
28
A B
0.236
4.3
4.9
7.0
0.236
0.354
4.3
5.2
4.9
6.4
7.0
9.2
0.354
0.295
5.2
4.9
6.4
7.0
9.2
0.354
0.4
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5 | 1.130
34
A B
0.283
4.6
5.2
7.6
0.283
0.425
4.6 5.5
5.2 6.7
7.6 9.8
0.425
0.354
5.5 5.2
6.7 6.4 | 1.320
38
A B
0.330
4.9
5.5
7.9
0.330 0.496
4.9 6.1
5.5 7.3
7.9 10.4
0.496 0.413
6.1 5.5
7.3 6.7 | 15.6 1.510 42 A B 0.378 5.2 6.1 8.5 0.378 0.567 5.2 6.4 6.1 7.6 8.5 11.3 0.567 0.472 6.4 6.1 7.6 7.3 | 16.5 1.700 46 A B 0.425 5.5 6.4 9.2 0.425 0.638 5.5 7.0 6.4 8.2 9.2 11.9 0.638 0.531 7.0 6.4 8.2 7.9 | | X
600
AD
0.360 | Factors 21 | -SP=2.83TP 41 A 36 B A 34 * 51 11 | m ³ /s side throw m m ³ /s side throw m m ³ /s side throw m m ³ /s side | 0.566 12 A B 0.142 3.1 3.7 5.2 0.142 0.212 3.1 4.0 3.7 4.9 5.2 7.0 0.213 0.177 4.0 3.7 4.9 4.6 7.0 6.4 0.283 4.9 6.1 8.5 | 0.755 21 A B 0.189 3.7 4.3 6.1 0.189 0.280 3.7 4.6 4.3 5.5 6.1 7.9 0.283 0.236 4.6 4.3 5.5 5.2 7.9 7.3 0.378 5.8 7.0 9.8 | 0.944 28 A B 0.236 4.3 4.9 7.0 0.236 0.354 4.3 5.2 4.9 6.4 7.0 9.2 0.354 0.295 5.2 4.9 6.4 5.8 9.2 8.2 0.472 6.7 7.9 11.3 | 1.130 34 A B 0.283 4.6 5.2 7.6 0.283 0.425 4.6 5.5 5.2 6.7 7.6 9.8 0.425 0.354 5.5 5.2 6.7 6.4 9.8 9.2 0.566 7.0 8.5 11.9 | 1.320 38 A B 0.330 4.9 5.5 7.9 0.330 0.496 4.9 6.1 5.5 7.3 7.9 10.4 0.496 0.413 6.1 5.5 7.3 6.7 10.4 9.8 0.661 7.6 9.2 12.8 | 15.6 1.510 42 A B 0.378 5.2 6.1 8.5 0.378 0.567 5.2 6.4 6.1 7.6 8.5 11.3 0.567 0.472 6.4 6.1 7.6 7.6 7.6 7.8 11.3 10.4 0.755 8.2 10.1 13.7 | 16.5 1.700 46 A B 0.425 5.5 6.4 9.2 0.425 0.638 5.5 7.0 6.4 8.2 9.2 11.9 0.638 0.531 7.0 6.4 8.2 7.9 11.9 11.0 0.850 8.8 10.7 14.6 | | X
600
AD
0.360 | Factors | -SP=2.83TP 41 A 36 B A 34 * 51 | m ³ /s side throw m | 0.566 12 A B 0.142 3.1 3.7 5.2 0.142 0.212 3.1 4.0 3.7 4.9 5.2 7.0 0.213 0.177 4.0 3.7 4.9 4.6 7.0 6.4 0.283 4.9 6.1 8.5 0.566 6.1 7.3 10.7 0.885 15 A B | 0.755 21 A B
0.189 3.7 4.3 6.1 0.189 0.280 3.7 4.6 4.3 5.5 6.1 7.9 0.283 0.236 4.6 4.3 5.5 5.2 7.9 7.3 0.378 5.8 7.0 9.8 0.755 7.0 8.5 12.2 1.180 24 A B | 0.944 28 A B 0.236 4.3 4.9 7.0 0.236 0.354 4.3 5.2 4.9 6.4 7.0 9.2 0.354 0.295 5.2 4.9 6.4 5.8 9.2 8.2 0.472 6.7 7.9 11.3 0.944 7.9 9.8 14.0 1.480 31 A B | 1.130 34 A B 0.283 4.6 5.2 7.6 0.283 0.425 4.6 5.5 5.2 6.7 7.6 9.8 0.425 0.354 5.5 5.2 6.7 6.4 9.8 9.2 0.566 7.0 8.5 11.9 1.130 8.5 10.4 14.9 1.770 37 A B | 1.320 38 A B 0.330 4.9 5.5 7.9 0.330 0.496 4.9 6.1 5.5 7.3 7.9 10.4 0.496 0.413 6.1 5.5 7.3 6.7 10.4 9.8 0.661 7.6 9.2 12.8 1.320 9.2 11.3 16.2 2.070 41 A B | 15.6 1.510 42 A B 0.378 5.2 6.1 8.5 0.378 0.567 5.2 6.4 6.1 7.6 8.5 11.3 0.567 0.472 6.4 6.1 7.6 7.3 11.3 10.4 0.755 8.2 10.1 13.7 1.510 9.8 12.2 17.1 2.360 45 A B | 16.5 1.700 46 A B 0.425 5.5 6.4 9.2 0.425 0.638 5.5 7.0 6.4 8.2 9.2 11.9 1.0638 0.531 7.0 6.4 8.2 7.9 11.9 11.0 0.850 8.8 10.7 14.6 1.700 10.7 12.8 18.3 2.660 49 A B | | X
600
AD
0.360 | Factors 21 Return | -SP=2.83TP 41 B A 36 B A 34 * B A 11 NC+9 | m³/s side throw m Total m³/s NC m³/s side throw m | 0.566 12 A B 0.142 3.1 3.7 5.2 0.142 0.212 3.1 4.0 3.7 4.9 5.2 7.0 0.213 0.177 4.0 3.7 4.9 4.6 7.0 6.4 0.283 4.9 6.1 8.5 0.566 6.1 7.3 10.7 0.885 15 A B 0.221 3.4 4.3 5.8 | 0.755 21 A B 0.189 3.7 4.3 6.1 0.189 0.280 3.7 4.6 4.3 5.5 6.1 7.9 0.283 0.236 4.6 4.3 5.5 5.2 7.9 7.3 0.378 5.8 7.0 9.8 0.755 7.0 8.5 12.2 1.180 24 A B 0.295 4.0 4.9 6.7 | 0.944 28 A B 0.236 4.3 4.9 7.0 0.236 0.354 4.3 5.2 4.9 6.4 7.0 9.2 0.354 0.295 5.2 4.9 6.4 5.8 9.2 8.2 0.472 6.7 7.9 11.3 0.944 7.9 9.8 14.0 1.480 31 A B 0.369 4.6 5.5 7.6 | 1.130 34 A B 0.283 4.6 5.2 7.6 0.283 0.425 4.6 5.5 5.2 6.7 7.6 9.8 0.425 0.354 5.5 5.2 6.7 6.4 9.8 9.2 0.566 7.0 8.5 11.30 8.5 10.4 14.9 1.770 37 A B 0.442 4.9 6.1 8.2 | 1.320 38 A B 0.330 4.9 5.5 7.9 0.330 0.496 4.9 6.1 5.5 7.3 7.9 10.4 0.496 0.413 6.1 5.5 7.3 6.7 10.4 9.8 0.661 7.6 9.2 11.3 16.2 2.070 41 A B 0.516 5.2 6.4 8.8 | 15.6 1.510 42 A B 0.378 5.2 6.1 8.5 0.378 0.567 5.2 6.4 6.1 7.6 8.5 11.3 0.567 0.472 6.4 6.1 7.6 7.3 11.3 10.4 0.755 8.2 10.1 13.7 1.510 9.8 12.2 17.1 2.360 45 A B 0.590 5.5 7.0 9.5 | 16.5 1.700 46 A B 0.425 5.5 6.4 9.2 0.425 0.638 5.5 7.0 6.4 8.2 9.2 11.9 0.638 0.531 7.0 6.4 8.2 7.9 11.9 11.0 0.850 8.8 10.7 14.6 1.700 10.7 12.8 18.3 2.660 49 A B 0.664 6.1 7.3 10.1 | | AD 0.360 m ² | Factors 21 Return | -SP=2.83TP 41 B A B A B A B A B A B A B A B A B A B | m³/s side throw m m³/s side throw m m³/s side throw m m³/s side throw m Total m³/s NC m³/s side throw m m³/s side throw m | 0.566 12 A B 0.142 3.1 3.7 5.2 0.142 0.212 3.1 4.0 3.7 4.9 5.2 7.0 0.213 0.177 4.0 3.7 4.9 4.6 7.0 6.4 0.283 4.9 6.1 8.5 0.566 6.1 7.3 10.7 0.885 15 A B 0.221 3.4 4.3 5.8 0.221 0.332 3.4 4.6 4.3 5.8 7.9 | 0.755 21 A B 0.189 3.7 4.3 6.1 0.189 0.280 3.7 4.6 4.3 5.5 6.1 7.9 0.283 0.236 4.6 4.3 5.5 5.2 7.9 7.3 0.378 5.8 7.0 9.8 0.755 7.0 8.5 12.2 1.180 24 A B 0.295 4.0 4.9 6.7 0.295 0.443 4.0 5.2 4.9 6.7 0.295 0.444 4.0 5.2 4.9 6.7 9.2 | 0.944 28 A B 0.236 4.3 4.9 7.0 0.236 0.354 4.3 5.2 4.9 6.4 7.0 9.2 0.354 0.295 5.2 4.9 6.4 5.8 9.2 8.2 0.472 6.7 7.9 11.3 0.944 7.9 9.8 14.0 1.480 31 A B 0.369 4.6 5.5 7.6 0.369 0.553 4.6 5.8 7.6 10.4 | 1.130 34 A B 0.283 4.6 5.2 7.6 0.283 0.425 4.6 5.5 5.2 6.7 7.6 9.8 0.425 0.354 5.5 5.2 6.7 6.4 9.8 9.2 0.566 7.0 8.5 11.9 1.130 8.5 10.4 14.9 1.770 37 A B 0.442 4.9 6.1 8.2 0.442 0.663 4.9 6.4 6.1 7.9 8.2 11.3 | 1.320 38 A B 0.330 4.9 5.5 7.9 0.330 0.496 4.9 6.1 5.5 7.3 7.9 10.4 0.496 0.413 6.1 5.5 7.3 6.7 10.4 9.8 0.661 7.6 9.2 11.3 16.2 2.070 41 A B 0.516 5.2 6.4 8.8 0.516 0.774 5.2 6.4 8.8 0.516 0.774 5.2 6.4 8.8 0.516 0.774 5.2 6.4 8.8 0.516 0.774 5.2 6.4 8.8 0.516 0.774 5.2 6.4 8.8 0.516 0.774 5.2 6.4 8.8 0.516 0.774 5.2 6.4 8.8 0.516 0.774 5.2 6.4 8.8 0.516 0.774 5.2 6.4 8.8 0.516 0.774 5.2 6.4 8.8 0.516 0.774 5.2 6.4 8.8 0.516 0.774 5.2 6.4 8.8 | 15.6 1.510 42 A B 0.378 5.2 6.1 8.5 0.378 0.567 5.2 6.4 6.1 7.6 8.5 11.3 0.567 0.472 6.4 6.1 7.6 7.3 11.3 10.4 0.755 8.2 10.1 13.7 1.510 9.8 12.2 17.1 2.360 45 A B 0.590 5.5 7.0 9.5 0.590 0.885 5.5 7.3 7.0 9.2 9.5 12.8 | 16.5 1.700 46 A B 0.425 5.5 6.4 9.2 0.425 0.638 5.5 7.0 6.4 8.2 9.2 11.9 0.638 0.531 7.0 6.4 8.2 7.9 11.9 11.0 0.850 8.8 10.7 14.6 1.700 10.7 12.8 18.3 2.660 49 A B 0.664 6.1 7.3 10.1 0.664 0.996 6.1 7.9 1.3 9.8 10.1 13.7 | | AD 0.360 m² | Factors 21 Return | -SP=2.83TP 41 B A 36 B A 34 * * * * * * * * * * * * * * * * * * | m³/s side throw m m³/s side throw m m³/s side throw m m³/s side throw m Total m³/s NC m³/s side throw m m³/s side throw m | 0.566 12 A B 0.142 3.1 3.7 5.2 0.142 0.212 3.1 4.0 3.7 4.9 5.2 7.0 0.213 0.177 4.0 3.7 4.9 4.6 7.0 6.4 0.283 4.9 6.1 8.5 0.566 6.1 7.3 10.7 0.885 15 A B 0.221 3.4 4.3 5.8 0.221 3.4 4.6 4.3 5.8 0.221 0.332 3.4 4.6 4.3 5.8 0.221 0.308 0.289 4.3 4.3 5.8 0.289 4.3 4.3 5.8 7.9 0.308 0.289 4.3 4.3 5.2 7.3 7.3 | 0.755 21 A B 0.189 3.7 4.3 6.1 0.189 0.280 3.7 4.6 4.3 5.5 6.1 7.9 0.283 0.236 4.6 4.3 5.5 5.2 7.9 7.3 0.378 5.8 7.0 9.8 0.755 7.0 8.5 12.2 1.180 24 A B 0.295 4.0 4.9 6.7 0.295 0.443 4.0 5.2 4.9 6.7 0.295 0.444 4.0 5.2 4.9 6.7 0.295 0.443 4.0 5.2 0.412 0.384 4.9 4.9 6.7 0.285 6.1 6.1 6.1 8.5 8.5 | 0.944 28 A B 0.236 4.3 4.9 7.0 0.236 0.354 4.3 5.2 4.9 6.4 7.0 9.2 0.354 0.295 5.2 4.9 6.4 5.8 9.2 8.2 0.472 6.7 7.9 11.3 0.944 7.9 9.8 14.0 1.480 31 A B 0.369 4.6 5.5 7.6 0.369 0.553 4.6 5.5 7.6 0.369 0.553 7.6 10.4 0.515 0.481 5.5 5.5 7.0 9.8 9.8 | 1.130 34 A B 0.283 4.6 5.2 7.6 0.283 0.425 4.6 5.5 5.2 6.7 6.6 9.8 0.425 0.354 5.5 5.2 6.7 6.4 9.8 9.2 0.566 7.0 8.5 11.9 1.130 8.5 10.4 14.9 1.770 37 A B 0.442 4.9 6.1 8.2 0.442 4.9 6.1 8.2 0.442 0.663 4.9 6.4 6.1 7.9 8.2 11.3 0.619 0.576 6.1 6.1 7.9 8.2 11.3 | 1.320 38 A B 0.330 4.9 5.5 7.9 0.330 0.496 4.9 6.1 5.5 7.3 7.9 10.4 0.496 0.413 6.1 5.5 7.3 6.7 10.4 9.8 0.661 7.6 9.2 11.3 16.2 2.070 41 A B 0.516 5.2 6.4 8.8 0.516 5.2 6.4 8.8 0.516 0.774 5.2 6.7 6.4 7.9 8.8 12.2 0.720 0.670 6.4 6.4 7.9 8.8 12.2 0.720 0.670 6.4 6.4 7.9 9.11.3 11.3 | 15.6 1.510 42 A B 0.378 5.2 6.1 8.5 0.378 0.567 5.2 6.4 6.1 7.6 8.5 11.3 0.567 0.472 6.4 6.1 7.6 7.6 7.6 7.0 11.3 10.4 0.755 8.2 10.1 13.7 1.510 9.8 12.2 17.1 2.360 45 A B 0.590 5.5 7.0 9.5 0.590 0.885 5.5 7.0 9.2 9.5 12.8 0.820 0.767 7.0 7.0 7.0 9.8 0.820 0.767 7.0 7.0 9.8 0.820 0.767 7.0 7.0 7.0 8.5 8.5 12.2 12.2 | 16.5 1.700 46 A B 0.425 5.5 6.4 9.2 0.425 0.638 5.5 7.0 6.4 8.2 9.2 11.9 0.638 0.531 7.0 6.4 8.2 7.9 11.9 11.0 0.850 8.8 10.7 14.6 1.700 10.7 12.8 18.3 2.660 49 A B 0.664 6.1 7.3 10.1 0.664 0.996 6.1 7.9 7.3 9.8 10.1 13.7 0.926 0.862 7.3 7.3 9.2 9.2 12.8 12.8 | | AD 0.360 m ² | Factors 21 Return | -SP=2.83TP 41 B A 36 B A 34 * B A 41 A 41 * B A A A A B A B A B A B A B A B A B | m³/s side throw m m³/s side throw m m³/s side throw m m³/s side throw m Total m³/s NC m³/s side throw m m³/s side throw m | 0.566 12 A B 0.142 3.1 3.7 5.2 0.142 0.212 3.1 4.0 3.7 4.9 5.2 7.0 0.213 0.177 4.0 3.7 4.9 4.6 7.0 6.4 0.283 4.9 6.1 8.5 0.566 6.1 7.3 10.7 0.885 15 A B 0.221 3.4 4.3 5.8 0.221 3.4 4.3 5.8 0.221 3.4 4.6 4.3 5.5 5.8 7.9 0.308 0.289 4.3 4.3 5.8 0.289 4.3 4.3 5.8 0.289 4.3 4.3 5.8 0.289 4.3 4.3 5.8 0.289 4.3 4.3 5.8 0.289 4.3 4.3 5.8 0.289 4.3 4.3 5.8 0.289 4.3 4.3 5.8 0.289 4.3 4.3 5.8 0.289 4.3 4.3 5.8 0.289 4.3 4.3 5.8 0.289 4.3 4.3 5.8 0.289 4.3 4.3 5.8 0.289 4.3 4.3 5.8 0.289 4.3 4.3 5.8 0.289 4.3 4.3 5.8 0.289 4.3 4.3 5.2 5.2 | 0.755 21 A B 0.189 3.7 4.3 6.1 0.189 0.280 3.7 4.6 4.3 5.5 6.1 7.9 0.283 0.236 4.6 4.3 5.5 5.2 7.9 7.3 0.378 5.8 7.0 8.5 12.2 1.180 24 A B 0.295 4.0 4.9 6.7 0.295 0.443 4.0 5.2 4.9 6.4 6.7 9.2 0.412 0.384 4.9 6.1 6.1 | 0.944 28 A B 0.236 4.3 4.9 7.0 0.236 0.354 4.3 5.2 4.9 6.4 7.0 9.2 0.354 0.295 5.2 4.9 6.4 5.8 9.2 8.2 0.472 6.7 7.9 11.3 0.944 7.9 9.8 14.0 1.480 31 A B 0.369 4.6 5.5 7.6 0.369 4.6 5.5 7.6 0.369 5.5 7.6 0.46 5.8 5.5 7.6 0.47 7.9 7.9 7.9 8.8 14.0 1.480 31 A B 0.369 4.6 5.5 7.6 0.369 4.6 5.5 7.6 0.369 0.553 7.6 0.481 5.5 5.5 7.0 7.0 | 1.130 34 A B 0.283 4.6 5.2 7.6 0.283 0.425 4.6 5.5 5.2 6.7 7.6 9.8 0.425 0.354 5.5 5.2 6.7 6.4 9.8 9.2 0.566 7.0 8.5 11.9 1.130 8.5 10.4 14.9 1.770 37 A B 0.442 4.9 6.1 8.2 0.442 0.663 4.9 6.4 6.1 7.9 8.2 11.3 0.619 0.576 6.1 6.1 7.6 7.6 | 1.320 38 A B 0.330 4.9 5.5 7.9 0.330 0.496 4.9 6.1 5.5 7.3 6.7 10.4 0.496 0.413 6.1 5.5 7.3 6.7 10.4 9.8 0.661 7.6 9.2 12.8 1.320 9.2 11.3 16.2 2.070 41 A B 0.516 5.2 6.4 8.8 0.516 0.774 5.2 6.4 8.8 0.516 0.772 0.670 6.4 6.4 7.9 7.9 | 15.6 1.510 42 A B 0.378 5.2 6.1 8.5 0.378 0.567 5.2 6.4 6.1 7.6 8.5 11.3 0.567 0.472 6.4 6.1 7.6 7.3 11.3 10.4 0.755 8.2 10.1 13.7 1.510 9.8 12.2 17.1 2.360 45 A B 0.590 5.5 7.0 9.5 0.590 0.885 5.5 7.0 9.5 0.820 0.767 7.0 8.5 8.5 | 16.5 1.700 46 A B 0.425 5.5 6.4 9.2 0.425 0.638 5.5 7.0 6.4 8.2 9.2 11.9 0.638 0.531 7.0 6.4 8.2 7.9 11.9 11.0 0.850 8.8 10.7 14.6 1.700 10.7 12.8 18.3 2.660 49 A B 0.664 6.1 7.3 10.1 0.664 0.996 6.1 7.3 10.1 0.664 0.996 6.1 7.3 9.2 9.2 0.926 0.882 7.3 9.2 9.2 | $^{^{\}ast}$ These cores are constructed to give as near as possible equal air flow in A & B directions. | Size | | Patterns | Neck Vel m/s | 1.5 | 7 | 2.10 | _ | 2.6 | 2 | 3.1 | 5 | 3.6 | 7 _ | 4.1 | 9 _ | 4.7 | 2 | |----------------|-------------|-------------------------|----------------------|---------------|---|---------------|--------------|--------------|---------------|--------------|---|--------------|---------------|---------------|---------------|---------------|---------------| | in mm | | T according | TP Pa | 6 | | 11 | | 18 | | 25 | | 35 | | 45 | | 57 | | | | Return | NC+11 | Total m³/s | 1.2 | 70 | 1.70 | 00 | 2.1 | 20 | 2.5 | 50 | 2.9 | 70 | 3.4 | 00 | 3.8 | 20 | | | Keturn | NC+11 | NC | 16 | | 25 | | 32 | | 38 | | 42 | | 46 | | 50 | | | | Factors | -SP=3.8TP | NG | A | В | A | В | A | В | A | В | A | В | A | В | A | В | | | | <u> </u> | m³/s side | 0.319 | | 0.425 | | 0.531 | | 0.637 | | 0.743 | | 0.850 | | 0.956 | | | 900 | | 44 | throw m | 3.7 | | 4.3 | | 4.9 | | 5.2 | | 5.5 | | 6.1 | | 6.4 | | | X | | ◆ ■ ◆ 41 | | 4.6 | | 5.2 | | 5.8 | | 6.4 | | 6.7 | | 7.3 | | 7.9 | | | 900 | | <u>
</u> | | 6.4 | | 7.3 | | 8.2 | | 9.2 | • | 9.8 | | 10.4 | | 11.0 | | | | | | m³/s side | 0.319 | 0.477 | 0.425 | 0.637 | 0.531 | 0.796 | 0.637 | 0.956 | 0.743 | 1.120 | 0.850 | 1.270 | 0.956 | 1.430 | | | | 36 | throw m | 3.7 | 4.9 | 4.3 | 5.0 | 4.9 | 6.7 | 5.2 | 7.0 | 5.5 | 7.6 | 6.1 | 8.2 | 6.4 | 8.8 | | | | A 30 | | 4.6 | 6.1 | 5.2 | 8.7 | 5.8 | 7.9 | 6.4 | 8.5 | 6.7 | 9.2 | 7.3 | 10.1 | 7.9 | 10.7 | | | | B | 37 | 6.4
0.425 | 8.5
0.425 | 7.3
0.566 | 9.8
0.566 | 8.2
0.708 | 11.3
0.708 | 9.2
0.850 | 11.9
0.850 | 9.8
0.991 | 12.8
0.991 | 10.4
1.130 | 13.7
1.130 | 11.0
1.270 | 14.6
1.270 | | | | | m³/s side
throw m | 0.425 | 4.9 | 5.8 | 5.8 | 6.7 | 6.7 | 7.0 | 7.0 | 7.6 | 7.6 | 8.2 | 8.2 | 8.8 | 8.8 | | | | ₹ 34 * | throw m | 6.1 | 6.1 | 7.0 | 7.0 | 7.9 | 7.9 | 8.5 | 8.5 | 9.2 | 9.2 | 10.1 | 10.1 | 10.7 | 10.7 | | | | ¬B^ | | 8.5 | 8.5 | 9.8 | 9.8 | 11.3 | 11.3 | 11.9 | 11.9 | 12.8 | 12.8 | 13.7 | 13.7 | 14.6 | 14.6 | | AD | A | _ | m³/s side | 0.637 | • | 0.850 | | 1.060 | ••••• | 1.270 | • | 1.490 | ••••• | 1.700 | | 1.910 | | | 0.81 | 21 | 51 | throw m | 6.1 | | 7.0 | | 7.9 | | 8.5 | | 9.2 | | 9.8 | | 10.7 | | | m ² | | 31 | | 7.3 | | 8.5 | | 9.8 | | 10.4 | | 11.3 | | 12.2 | | 12.8 | | | | • | | | 10.7 | | 12.2 | | 14.0 | | 14.9 | • | 16.2 | | 17.1 | | 18.3 | | | | | | m³/s side | 1.270 | | 1.700 | | 2.120 | | 2.550 | | 2.970 | | 3.400 | | 3.820 | | | | | 11 | throw m | 7.6
9.2 | | 8.8 | | 10.1 | | 11.0 | | 11.6 | | 12.5 | | 13.4 | | | | | | | 13.1 | | 10.7
15.3 | | 12.2
17.4 | | 13.1
18.6 | | 14.0
20.1 | | 14.9
21.7 | | 16.2
22.9 | | | | D. d | NC 44 | Total m³/s | 2.2 | 7 0 | 3.02 | 20 | 3.7 | 90 | 4.5 | 30 | 5.29 | an e | 6.0 | 10 | 6.8 | nn | | | Return | NC+14 | NC | 19 | | 28 | | 35 | | 41 | | 45 | | 49 | | 53 | | | | Factors | -SP=4.5TP | | A | В | A | В | A | В | Α | В | A | В | A | В | A | В | | | | | m³/s side | 0.566 | | 0.755 | | 0.944 | | 1.130 | | 1.320 | | 1.510 | | 1.700 | | | 1200 | | 44 | throw m | 4.6 | | 5.2 | | 5.8 | | 6.4 | | 6.7 | | 7.3 | | 7.9 | | | X | | 41 | | 5.5 | | 6.4 | | 7.3 | | 7.9 | | 8.5 | | 9.2 | | 9.8 | | | 1200 | | <u> </u> | | 7.9 | | 9.2 | | 10.4 | | 11.3 | | 12.2 | | 12.8 | | 13.7 | | | | | | m³/s side | 0.566 | 0.850 | 0.755 | 1.130 | 0.944 | 1.420 | 1.130 | 1.700 | 1.320 | 1.980 | 1.510 | 2.270 | 1.700 | 2.550 | | | | 36 | throw m | 4.6
5.5 | 6.1
7.3 | 5.2
6.4 | 7.0
8.5 | 5.8
7.3 | 7.9
9.8 | 6.4
7.9 | 8.5
10.4 | 6.7
8.5 | 9.2
11.3 | 7.3
9.2 | 9.8
12.2 | 7.9
9.8 | 10.7
12.8 | | | | A SS | | 5.5
7.9 | 7.3
10.7 | 92.0 | 12.2 | 10.4 | 14.0 | 11.3 | 14.9 | 6.5
12.2 | 16.2 | 9.2
12.8 | 17.1 | 9.6
13.7 | 18.3 | | | | A R | m³/s side | 0.779 | 0.743 | 1.040 | 0.991 | 1.300 | 1.240 | 1.560 | 1.440 | 1.820 | 1.740 | 2.080 | 1.980 | 2.340 | 2.230 | | | | 1 | throw m | 5.8 | 5.8 | 6.7 | 6.7 | 7.6 | 7.6 | 8.2 | 8.2 | 8.8 | 8.8 | 9.5 | 9.5 | 10.1 | 10.1 | | | | 34 * | | 7.3 | 7.3 | 8.2 | 8.2 | 9.5 | 9.5 | 10.1 | 10.1 | 11.0 | 11.0 | 11.6 | 11.6 | 12.5 | 12.5 | | | | ▼B | | 10.1 | 10.1 | 11.6 | 11.6 | 13.1 | 13.1 | 14.3 | 14.3 | 15.3 | 15.3 | 16.5 | 16.5 | 17.4 | 17.4 | | AD | | A | m³/s side | 1.130 | | 1.510 | | 1.890 | | 2.270 | | 2.640 | | 3.020 | | 3.400 | | | 1.44 | — 24 | 51 | throw m | 7.6 | | 8.8 | | 10.1 | | 11.0 | | 11.6 | | 12.5 | | 13.4 | | | | | ⊢ /Ⅲ ▶ 51 | | 9.2 | | 10.7 | | 12.2 | | 13.1 | | 14.0 | | 14.9 | | 16.2 | | | m ² | 21 | 51 | | | | | | 47.4 | | 40.0 | | 20.4 | | 247 | | 22.0 | | | | 21 | 21 | 2, | 13.1 | | 15.3 | | 17.4 | | 18.6 | | 20.1 | | 21.7 | | 22.9 | | | | 21 | ₹ 11111 | m³/s side | 13.1
2.270 | • | 15.3
3.020 | | 3.780 | | 4.530 | | 5.290 | | 6.040 | | 6.800 | | | | 21 | 51
11 | m³/s side
throw m | 13.1 | | 15.3 | | 2 | | 2 | | | | | | | | $^{^{\}ast}$ These cores are constructed to give as near as possible equal air flow in A & B directions. | Guide Product Weights | | | | | | | | | | | | |---------------------------|---------|---------|---------|---------|--|--|--|--|--|--|--| | Approximate Weight in Kg. | | | | | | | | | | | | | Size | CMPA141 | CMPA136 | CMPA151 | CMPA121 | | | | | | | | | 150 x 150 | 0.60 | 0.65 | 0.54 | 0.53 | | | | | | | | | 225 x 225 | 0.80 | 0.80 | 0.83 | 0.81 | | | | | | | | | 300 x 300 | 1.20 | 1.32 | 1.18 | 1.14 | | | | | | | | | 375 x 375 | 1.60 | 1.56 | 1.66 | 1.60 | | | | | | | | | 450 x 450 | 2.00 | 1.91 | 2.14 | 2.10 | | | | | | | | | Guide Product Weights | | | | | | | | | | | | |---------------------------|---------|---------|--------|---------|--|--|--|--|--|--|--| | Approximate Weight in Kg. | | | | | | | | | | | | | Size | CMPA111 | CMPA241 | CMP-S | CMPS141 | | | | | | | | | 150 x 150 | 0.51 | 2.60 | PANEL | 1.00 | | | | | | | | | 225 x 225 | 0.79 | 2.70 | 595 SO | 1.50 | | | | | | | | | 300 x 300 | 1.13 | 2.70 | 232.20 | 1.90 | | | | | | | | | 375 x 375 | 1.56 | 2.70 | 2.00 | 2.98 | | | | | | | | | 450 x 450 | 2.03 | 2.70 | 2.00 | 3.40 | | | | | | | | | Size | Patterns Patterns | Neck Vel m/s | 2.01 | 2.10 | 2.62 | 3.15 | 3.67 | 4.19 | 4.72 | |-------------------------------|----------------------------------|----------------------|--|--|--|--|--|--|--| | in mm | Return NC+0 | TP Pa
Total m³/s | 6
0.053 | 0.071 | 0.088 | 0.106 | 35
0.124 | 0.142 | 57
0.159 | | | Factors -SP=1.3 TP | NC | -
A B | | 17
A B | 23
A B | 27
A B | 31
A B | 35
A B | | 150
x
225 | A 43 A 43 | m³/s side
throw m | 0.017 0.000
1.8 1.2
2.4 1.5
3.1 2.1 | 2.1 1.5
2.7 1.8
3.7 2.4 | 0.029 0.015
2.4 1.8
3.1 2.1
4.3 2.7 | 0.035 0.017
2.7 1.8
3.4 2.1
4.6 3.1 | 0.041 0.021
2.7 2.1
3.7 2.4
4.9 3.4 | 0.047 0.024
3.1 2.1
4.0 2.4
5.2 3.4 | 0.053 0.026
3.4 2.4
4.3 2.7
5.5 3.7 | | | B 31 | m³/s side
throw m | 0.022 0.000
2.1 1.2
2.4 1.5
3.4 2.1 | 8 0.029 0.012
2.4 1.5
2.7 1.8
4.0 2.4 | 0.037 0.015
2.7 1.8
3.1 2.1
4.6 2.7 | 0.044 0.017
3.1 1.8
3.4 2.1
4.9 3.1 | 0.052 0.021
3.4 2.1
3.7 2.4
5.2 3.4 | 0.059 0.024
3.4 2.1
4.0 2.4
5.5 3.4 | 0.066 0.026
3.7 2.4
4.3 2.7
6.1 3.7 | | | A 33 | m³/s side
throw m | 0.020 0.01
1.8 1.5
2.4 1.8
3.1 2.7 | 7 0.026 0.022
2.1 1.8
2.7 2.1
3.7 3.1 | 0.033 0.027
2.4 2.1
3.1 2.4
4.3 3.4 | 0.040 0.033
2.7 2.1
3.4 2.7
4.6 3.7 | 0.046 0.039
2.7 2.4
3.7 2.7
4.9 4.0 | 0.053 0.044
3.1 2.4
4.0 3.1
5.2 4.3 | 0.060 0.050
3.4 2.7
4.3 3.4
5.5 4.6 | | | B 37 | m³/s side
throw m | 0.017 0.01
1.8 1.8
2.4 2.4
3.1 3.1 | 7 0.024 0.024
2.1 2.1
2.7 2.7
3.7 3.7 | 0.029 0.029
2.4 2.4
3.1 3.1
4.3 4.3 | 0.035 0.035
2.7 2.7
3.4 3.4
4.6 4.6 | 0.041 0.041
2.7 2.7
3.7 3.7
4.9 4.9 | 0.047 0.047
3.1 3.1
4.0 4.0
5.2 5.2 | 0.053 0.053
3.4 3.4
4.3 4.3
5.5 5.5 | | | A 22, 23 | m³/s side
throw m | 0.026
2.4
3.1
4.0 | 0.035
2.7
3.4
4.6 | 0.044
3.1
4.0
5.2 | 0.053
3.4
4.3
5.5 | 0.062
3.7
4.6
6.1 | 0.071
4.0
4.9
6.4 | 0.079
4.3
5.2
7.0 | | AD
0.033
m ² | 52 B 54 53 | m³/s side
throw m | 0.035 0.01
2.4 1.8
3.1 2.4
4.3 3.0 | 7 0.047 0.024
2.7 2.1
3.4 2.7
4.9 3.6 | 0.059 0.029
3.1 2.4
4.0 3.1
5.5 4.3 | 0.071 0.035
3.4 2.7
4.3 3.4
6.1 4.6 | 0.083 0.044
3.7 2.7
4.6 3.7
6.4 4.9 | 0.094 0.047
4.0 3.1
4.9 4.0
7.0 5.2 | 0.106 0.053
4.3 3.4
5.2 4.3
7.3 5.5 | | | 12, 13 | m³/s side
throw m | 0.053
3.1
3.7
5.2 | 0.071
3.7
4.3
6.1 | 0.088
4.3
4.8
7.0 | 0.106
4.6
5.2
7.6 | 0.124
4.9
5.5
7.9 | 0.142
5.2
6.1
8.5 | 0.159
5.5
6.4
9.2 | | | Return NC+2
Factors -SP=1.7TP | Total m³/s
NC | 0.071
-
A B | 0.094
11 | 0.118
18
A B | 0.142
24
A B | 0.165
28
A B | 0.189
32
A B | 0.212
36
A B | | 150
x
300 | 42 43 A 43 | m³/s side
throw m | 0.026 0.000
2.4 1.2
3.1 1.5
4.0 2.1 | | 0.044 0.015
3.1 1.8
4.0 2.1
5.2 2.7 | 0.055 0.018
3.4 1.8
4.3 2.1
5.5 3.1 | 0.062 0.021
3.7 2.1
4.6 2.4
6.1 3.4 | 0.071 0.024
4.0 2.1
4.9 2.4
6.4 3.4 | 0.080 0.026
4.3 2.4
5.2 2.7
7.3 3.7 | | | B 45 * | m³/s side
throw m | 0.018 0.01
2.1 2.1
2.4 2.4
3.4 3.4 | 2.4 2.4
2.7 2.7
4.0 4.0 | 0.029 0.029
2.7 2.7
3.1 3.1
4.6 4.6 | 0.035 0.035
3.1 3.1
3.4 3.4
4.9 4.9 | 0.041 0.041
3.4 3.4
3.7 3.7
5.2 5.2 | 0.047 0.047
3.4 3.4
4.0 4.0
5.5 5.5 | 0.053 0.053
3.7 3.7
4.3 4.3
6.1 6.1 | | | 31 | m³/s side
throw m | 0.031 0.000
2.4 1.2
3.1 1.5
4.3 2.1 | 2.7 1.5
3.4 1.8
4.9 2.4 | 0.052 0.015
3.1 1.8
4.0 2.1
5.5 2.7 | 0.062 0.018
3.4 1.8
4.3 2.1
6.1 3.1 | 0.072 0.020
3.7 2.1
4.6 2.4
6.4 3.4 | 0.083 0.024
4.0 2.1
4.9 2.4
7.0 3.4 | 0.093 0.026
4.6 2.4
5.5 2.7
7.9 3.7 | | | 33 | m³/s side
throw m | 0.035 0.01
1.8 1.8
2.4 2.4
3.1 3.1 | 2.1 2.1
2.7 2.7
3.7 3.7 | 0.060 0.029
2.4 2.4
3.1 3.1
4.3 4.3 | 0.071 0.035
2.7 2.7
3.4 3.4
4.6 4.6 | 0.083 0.041
2.7 2.7
3.7 3.7
4.9 4.9 | 0.094 0.047
3.1 3.1
4.0 4.0
5.2 5.2 | 0.107 0.053
3.4 3.4
4.3 4.3
5.5 5.5 | | | B 37 | m³/s side
throw m | 0.026 0.02
2.4 2.1
3.1 2.7
4.0 3.7 | 2.7 2.4
3.4 3.1
4.6 4.3 | 0.044 0.037
3.1 2.7
4.0 3.4
5.2 4.9 | 0.053 0.044
3.4
3.1
4.3 3.7
5.5 5.2 | 0.062 0.052
3.7 3.4
4.6 4.0
6.1 5.5 | 0.071 A59
4.0 3.4
4.9 4.3
6.4 6.1 | 0.080 0.066
4.3 3.7
5.2 4.6
7.0 6.4 | | | A 22, 23 | m³/s side
throw m | 0.035
2.4
3.1
4.3 | 0.047
2.7
3.4
4.9 | 0.059
3.1
4.0
5.5 | 0.071
3.4
4.3
6.1 | 0.083
3.7
4.6
6.4 | 0.094
4.0
4.9
7.0 | 0.106
4.3
5.2
7.3 | | 0.045
m ² | 52 54
55 53 | m³/s side
throw m | 0.053 0.019
3.1 1.8
3.7 2.4
5.2 3.1 | 3.7 2.1
4.3 2.7
6.1 3.7 | 0.089 0.029
4.3 2.4
4.9 3.1
7.0 4.3 | 0.106 0.035
4.6 2.7
5.2 3.4
7.6 4.6 | 0.124 0.041
4.9 2.7
5.5 3.7
7.9 4.9 | 0.142 0.047
5.2 3.1
6.1 4.0
8.5 5.2 | 0.160 0.053
5.5 3.4
6.4 4.3
9.2 5.5 | | | 12, 13 | m³/s side
throw m | 0.071
3.1
3.7
5.2 | 0.094
3.7
4.3
6.1 | 0.118
4.3
4.9
7.0 | 0.142
4.6
5.2
7.6 | 0.165
4.9
5.5
7.9 | 0.189
5.2
6.1
8.5 | 0.212
5.5
6.4
9.2 | | | Return NC+2
Factors -SP=2.0TP | Total m³/s
NC | 0.089
-
A B | | 0.147
19
A B | 0.177
25
A B | 0.207
29
A B | 0.236
33
A B | 0.266
37
A B | | 150
x
375 | 42 43 A 43 | m³/s side
throw m | 0.035 0.000
2.4 1.2
3.1 1.5
4.3 2.1 | 2.7 1.5
3.4 1.8
4.9 2.4 | 0.059 0.015
3.1 1.8
4.0 2.1
5.5 2.7 | 0.071 0.018
3.4 1.8
4.3 2.1
6.1 3.1 | 0.083 0.021
3.7 2.1
4.6 2.4
6.4 3.4 | 0.094 0.024
4.0 2.1
4.9 2.4
7.0 3.4 | 0.106 | | | 45 * | m³/s side
throw m | 0.018 0.02
2.1 2.4
2.4 3.1
3.4 4.0 | 2.4 2.7
2.7 3.4
4.0 4.6 | 0.029 0.044
2.7 3.1
3.1 4.0
4.6 5.2 | 0.035 0.053
3.1 3.4
3.4 4.3
4.9 5.5 | 0.041 0.062
3.4 3.7
3.7 4.6
5.2 6.1 | 0.047 0.071
3.4 4.0
4.0 4.9
5.5 6.4 | 0.053 | | | 31 | m³/s side
throw m | 0.040 0.000
2.7 1.2
3.1 1.5
4.6 2.1 | 3.1 1.5
3.7 1.8
5.2 2.4 | 0.066 0.015
3.4 1.8
4.3 2.1
5.8 2.7 | 0.080 0.018
3.7 1.8
4.6 2.1
6.4 3.1 | 0.093 0.021
4.0 2.1
4.9 2.4
6.7 3.4 | 0.106 0.024
4.3 2.1
5.2 2.4
7.3 3.4 | 0.119 | | | A 33 | m³/s side
throw m | 0.053 0.013
2.7 1.8
3.1 2.4
4.6 3.1 | 3.1 2.1
3.7 2.7
5.2 3.7 | 0.089 0.029
3.4 2.4
4.3 3.1
5.8 4.3 | 0.106 0.035
3.7 2.7
4.6 3.4
6.4 4.6 | 0.125 0.041
4.0 2.7
4.9 3.7
6.7 4.9 | 0.142 0.047
4.3 3.1
5.2 4.0
7.3 5.2 | 0.160 0.053
4.6 3.4
5.5 4.3
7.9 5.5 | | | B 37 | m³/s side
throw m | 0.026 0.03
2.4 2.4
3.1 3.1
4.0 4.3 | 2.7 2.7
3.4 3.4
4.6 4.9 | 0.044 0.052
3.1 3.1
4.0 4.0
5.2 5.5 | 0.055 0.062
3.4 3.4
4.3 4.3
5.5 6.1 | 0.062 0.072
3.7 3.7
4.6 4.6
6.1 6.4 | 0.071 0.083
4.0 4.0
4.9 4.9
6.4 7.0 | 0.080 0.093
4.3 4.3
5.2 5.2
7.0 7.3 | | AB | ^A 22, 23 | m³/s side
throw m | 0.044
2.7
3.4
4.9 | 0.059
3.1
4.0
5.5 | 0.074
3.4
4.6
6.4 | 0.088
3.7
4.9
6.7 | 0.103
4.0
5.2
7.3 | 0.118
4.3
5.5
7.6 | 0.133
4.6
6.1
8.2 | | AD
0.056
m ² | 52 54
55 55 54 | m³/s side
throw m | 0.071 0.019
3.1 1.8
3.7 2.4
5.2 3.1 | 3.7 2.1
4.3 2.7
6.1 3.7 | 0.118 0.029
4.3 2.4
4.9 3.1
7.0 4.3 | 0.142 0.035
4.6 2.7
5.2 3.4
7.6 4.6 | 0.165 0.041
4.9 2.7
5.5 3.7
7.9 4.9 | 0.189 0.047
5.2 3.1
6.1 4.0
8.5 5.2 | 0.212 0.053
5.5 3.4
6.4 4.3
9.2 5.5 | | | 12, 13 | m³/s side
throw m | 0.089
3.4
4.3
5.8 | 0.118
4.0
4.9
6.7 | 0.147
4.6
5.5
7.6 | 0.177
4.9
6.1
8.2 | 0.207
5.2
6.4
8.8 | 0.236
5.5
7.0
9.5 | 0.266
6.1
7.3
10.1 | $^{^{\}ast}$ These cores are constructed to give as near as possible equal air flow in A & B directions. | Size | Patterns | Neck Vel m/s | 1.57 | 2.10 | 2.62 | 3.15 | 3.67 | 4.19 | 4.72 | |-------------------------------|----------------------|--|---|---|---|---|---|---|---| | in mm | Return NC+3 | TP Pa
Total m³/s | 6
0.106 | 11
0.142 | 18
0.177 | 25
0.212 | 35
0.248 | 45
0.283 | 57
0.319 | | | Factors -SP=2.8 TP | NC | -
А В | 13 A B | 20
A B | 26
A B | 30
A B | 34
A B | 38
A B | | 150
x
450 | 43 A3 | m³/s side
throw m | 0.044 0.009
2.7 1.2
3.4 1.5
4.9 2.1 | 3.1 1.5
4 1.8
5.5 2.4 | 0.074 0.015
3.4 1.8
4.6 2.1
6.4 2.7 | 0.089 0.018
3.7 1.8
4.9 2.1
6.7 3.1 | 0.103 0.021
4 2.1
5.2 2.4
7.3 3.4 | 0.118 0.024
4.3 2.1
5.5 2.4
7.6 3.4 | 0.133 0.026
4.6 2.4
6.1 2.7
8.2 3.7 | | | B 45 * | m³/s side
throw m | 0.026 0.020
2.4 2.4
3.1 3.1
4.0 4.0 | 2.7 2.7
3.4 3.4
4.6 4.6 | 0.044 0.044
3.1 3.1
4.0 4.0
5.2 5.2 | 0.053 0.053
3.4 3.4
4.3 4.3
5.5 5.5 | 0.062 0.062
3.7 3.7
4.6 4.6
6.1 6.1 | 0.071 0.071
4.0 4.0
4.9 4.9
6.4 6.4 | 0.080 0.080
4.3 4.3
5.2 5.2
7.0 7.0 | | | 31 | m³/s side
throw m
m³/s side | 0.049 0.009
2.7 1.2
3.4 1.5
4.9 2.1
0.071 0.018 | 3.1 1.5
4.0 1.8
5.5 2.4 | 0.081 0.015
3.4 1.8
4.6 2.1
6.4 2.7
0.119 0.029 | 0.097 0.018
3.7 1.8
4.9 2.1
6.7 3.1
0.142 0.035 | 0.113 0.021
4.0 2.1
5.2 2.4
7.3 3.4
0.166 0.041 | 0.130 0.024
4.3 2.1
5.5 2.4
7.6 3.4
0.189 0.047 | 0.146 0.026
4.6 2.4
6.1 2.7
8.2 3.7
0.213 0.053 | | | 33 | throw m | 3.1 1.8
3.7 2.4
5.2 3.1
0.035 0.03 | 3.7 2.1
4.3 2.7
6.1 3.7 | 4.3 2.4
4.9 3.1
7.0 4.3
0.059 0.059 | 4.6 2.7
5.2 3.4
7.6 4.6
0.071 0.071 | 4.9 2.7
5.5 3.7
7.9 4.9
0.083 0.083 | 5.2 3.1
6.1 4.0
8.5 5.2
0.094 0.094 | 5.5 3.4
6.4 4.3
9.2 5.5
0.106 0.106 | | | B 37 | throw m
m³/s side | 2.4 2.4
3.1 3.1
4.3 4.3
0.053 | 2.7 2.7
3.4 3.4
4.9 4.9
0.071 | 3.1 3.1
4.0 4.0
5.5 5.5
0.088 | 3.4 3.4
4.3 4.3
6.1 6.1
0.106 | 3.7 3.7
4.6 4.6
6.4 6.4
0.124 | 4.0 4.0
4.9 4.9
7.0 7.0
0.142 | 4.3 4.3
5.2 5.2
7.3 7.3
0.159 | | AD | ^A 22, 23 | throw m
m³/s side | 3.1
3.7
5.2
0.088 0.018 | | 4.3
4.9
7.0
0.148 0.029 | 4.6
5.2
7.6
0.177 0.035 | 4.9
5.5
7.9
0.207 0.041 | 5.2
6.1
8.5
0.236 0.047 | 5.5
6.4
9.2
0.266 0.053 | | 0.068
m ² | 52
55
55
53 | throw m
m³/s side | 3.4 1.8
4.3 2.4
5.8 3.1
0.106 | 4.0 2.1
4.9 2.7
6.7 3.7
0.142 | 4.6 2.4
5.5 3.1
7.6 4.3
0.177 | 4.9 2.7
6.1 3.4
8.2 4.6
0.212 | 5.2 2.7
6.4 3.7
8.8 4.9
0.248 | 5.5 3.1
7.0 4.0
9.5 5.2
0.283 | 6.1 3.4
7.3 4.3
10.1 5.5
0.319 | | | Return NC+4 | throw m Total m³/s | 3.7
4.6
6.4
0.124 | 4.3
5.2
7.3
0.165 | 4.9
5.8
8.2
0.206 | 5.2
6.4
9.2
0.248 | 5.5
6.7
9.8
0.289 | 6.1
7.3
10.4
0.330 | 6.4
7.9
11.0
0.372 | | | Factors -SP=3.4TP | NC
m³/s side | - A B 0.053 0.009 | | A B 0.088 0.015 | A B 0.106 0.018 | A B 0.124 0.021 | A B
0.142 0.024 | A B
0.159 0.026 | | 150
x
525 | 42 | throw m
m³/s side | 3.1 1.2
3.7 1.5
5.2 2.1
0.026 0.03 | | 4.3 1.8
4.9 2.1
7.0 2.7
0.044 0.059 | 4.6 1.8
5.2 2.1
7.6 3.1
0.053 0.071 | 4.9 2.1
5.5 2.4
7.9 3.4
0.062 0.083 | 5.2 2.1
6.1 2.4
8.5 3.4
0.071 0.094 | 5.5 2.4
6.4 2.7
9.2 3.7
0.080 0.106 | | | 45 * | throw m | 2.4 2.4
3.1 3.1
4.0 4.3
0.058 0.009
3.1 1.2 | 2.7 2.7
3.4 3.4
4.6 4.9
3 0.077 0.012
3.7 1.5 | 3.1 3.1
4.0 4.0
5.2 5.5
0.096 0.015
4.3 1.8 | 3.4 3.4
4.3 4.3
5.5 6.1
0.115 0.018
4.6 1.8 | 3.7 3.7
4.6 4.6
6.1 6.4
0.134 0.021
4.9 2.1 | 4.0 4.0
4.9 4.9
6.4 7.0
0.153 0.024
5.2 2.1 | 4.3 4.3
5.2 5.2
7.0 7.3
0.172 0.026
5.5 2.4 | | | 31 | throw m
m ³ /s side
throw m | 3.7 1.5
5.2 2.1
0.088 0.018
3.4 1.8 | 4.3 1.8
6.1 2.4 | 4.5 1.6
4.9 2.1
7.0 2.7
0.148 0.029
4.6 2.4 | 5.2 2.1
7.6 3.1
0.177 0.035
4.9 2.7 | 5.5 2.4
7.9 3.4
0.207 0.041
5.2 2.7 | 6.1 2.4
8.5 3.4
0.236 0.047
5.5 3.1 | 6.4 2.7
9.2 3.7
0.266 0.053
6.1 3.4 | | | 33 B | m³/s side
throw m | 4.3 2.4
5.8 3.1
0.044 0.041
2.7 2.7 | 4.9 2.7
6.7 3.7 | 5.5 3.1
7.6 4.3
0.074 0.066
3.4 3.4 | 6.1 3.4
8.2 4.6
0.088 0.079
3.7 3.7 | 6.4 3.7
8.8 4.9
0.103 0.093
4.0 4.0 | 7.0 4.0
9.5 5.2
0.118 0.106
4.3 4.3 | 7.3 4.3
10.1 5.5
0.133 0.119
4.6 4.6 | | | A | m³/s side
throw m | 3.4 3.1
4.9 4.6
0.062
3.1 | 4.0 3.7
5.5 5.2
0.083
3.7 | 4.6 4.3
6.4 5.8
0.103
4.3 | 4.9 4.6
6.7 6.4
0.124
4.6 | 5.2 4.9
7.3 6.7
0.144
4.9 | 5.5 5.2
7.6 7.3
0.165
5.2 | 6.1 5.5
8.2 7.9
0.186
5.5 | | AD
0.079 | ^A 22, 23 | m³/s side
throw m | 3.7
5.2
0.106 0.018
3.7 1.8 | 4.3 2.1 | 4.9
7.0
0.177 0.029
4.9 2.4 | 5.2
7.6
0.212 0.035
5.2 2.7 | 5.5
7.9
0.248 0.041
5.5 2.7 | 6.1
8.5
0.283 0.047
6.1 3.1 | 6.4
9.2
0.319 0.053
6.4 3.4 | | m² | 55 53 | m³/s side
throw m | 4.6 2.4
6.4 3.1
0.124
3.7 | 5.2 2.7
7.3 3.7
0.165
4.3 | 5.8 3.1
8.2 4.3
0.206
4.9 | 6.4 3.4
9.2 4.6
0.248
5.2 | 6.7 3.7
9.8 4.9
0.289
5.5 | 7.3 4.0
10.1 5.2
0.330
6.1 | 7.9 4.3
11.0 5.5
0.372
6.4 | | | Return NC+5
 Total m³/s | 4.6
6.4
0.142 | 5.2
7.3
0.189 | 5.8
8.2
0.236 | 6.4
9.2
0.283 | 6.7
9.8
0.330 | 7.3
10.4
0.378 | 7.9
11.0
0.425 | | 150 | Factors -SP=4.1TP | NC
m³/s side
throw m | A B 0.062 0.009 3.1 1.2 | 3.7 1.5 | 21
A B
0.103 0.015
4.3 1.8 | 27
A B
0.124 0.018
4.6 1.8 | 31
A B
0.144 0.021
4.9 2.1 | 35
A B
0.165 0.024
5.2 2.1 | 39
A B
0.186 0.026
5.5 2.4
6.4 2.7 | | 600
x | 45 * | m³/s side
throw m | 3.7 1.5
5.2 2.1
0.035 0.039
2.4 2.4
3.1 3.1 | 4.3 1.8
6.1 2.4
5 0.047 0.047
2.7 2.7
3.4 3.4 | 4.9 2.1
7.0 2.7
0.059 0.059
3.1 3.1
4.0 4.0 | 5.2 2.1
7.6 3.1
0.071 0.071
3.4 3.4
4.3 4.3 | 5.5 2.4
7.9 3.4
0.083 0.083
3.7 3.7
4.6 4.6 | 6.1 2.4
8.5 3.4
0.094 0.094
4.0 4.0
4.9 4.9 | 6.4 2.7
9.2 3.7
0.106 0.106
4.3 4.3
5.2 5.2 | | | 31 | m³/s side
throw m | 4.3 4.3
0.067 0.009
3.1 1.2
3.7 1.5 | 4.9 4.9
0 0.088 0.012
3.7 1.5
4.3 1.8 | 5.5 5.5
0.111 0.015
4.3 1.8
4.9 2.1 | 6.1 6.1
0.133 0.018
4.6 1.8
5.2 2.1 | 6.4 6.4
0.155 0.021
4.9 2.1
5.5 2.4 | 7.0 7.0
0.177 0.024
5.2 2.1
6.1 2.4 | 7.3 7.3
0.199 0.026
5.5 2.4
6.4 2.7 | | | A 33 | m³/s side
throw m | 5.2 2.1
0.106 0.018
3.7 1.8
4.6 2.4
6.4 3.1 | 6.1 2.4
3 0.142 0.024
4.3 2.1
5.2 2.7
7.3 3.7 | 7.0 2.7
0.178 0.029
4.9 2.4
5.8 3.1
8.2 4.3 | 7.6 3.1
0.213 0.035
5.2 2.7
6.4 3.4
9.2 4.6 | 7.9 3.4
0.248 0.041
5.5 2.7
6.7 3.7
9.8 4.9 | 8.5 3.4
0.283 0.047
6.1 3.1
7.3 4.0
10.4 5.2 | 9.2 3.7
0.319 0.053
6.4 3.4
7.9 4.3
11.0 5.5 | | | B 37 | m³/s side
throw m | 0.044 0.049
2.7 2.7
3.4 3.4
4.9 4.9 | | 8.2 4.3
0.074 0.081
3.4 3.4
4.6 4.6
6.4 6.4 | 9.2 4.6
0.089 0.097
3.7 3.7
4.9 4.9
6.7 6.7 | 9.8 4.9
0.103 0.114
4.0 4.0
5.2 5.2
7.3 7.3 | 10.4 5.2
0.118 0.130
4.3 4.3
5.5 5.5
7.6 7.6 | 0.133 | | | A 22, 23 | m³/s side
throw m | 0.071
3.1
3.7
5.2 | 0.094
3.7
4.3
6.1 | 0.118
4.3
4.9
7.0 | 0.142
4.6
5.2
7.6 | 0.165
4.9
5.5
7.9 | 0.189
5.2
6.1
8.5 | 0.212
5.5
6.4
9.2 | | AD
0.090
m ² | 52 55 54 54 53 | m³/s side
throw m | 0.123 0.018
3.7 1.8
4.6 2.4
6.4 3.1 | 3 0.165 0.024
4.3 2.1
5.2 2.7
7.3 3.7 | 0.207 0.029
4.9 2.4
5.8 3.1
8.2 4.3 | 0.248 0.035
5.2 2.7
6.4 3.4
9.2 4.6 | 0.289 0.041
5.5 2.7
6.7 3.7
9.8 4.9 | 0.330 0.047
6.1 3.1
7.3 4.0
10.4 5.2 | 0.372 0.053
6.4 3.4
7.9 4.3
11.0 5.5 | | | 12, 13 | m³/s side
throw m | 0.142
4.0
4.9
7.0 | 0.189
4.6
5.5
7.9 | 0.236
5.2
6.4
9.2 | 0.283
5.5
6.7
9.8 | 0.330
6.1
7.3
10.4 | 0.378
6.4
7.6
11.3 | 0.425
7.0
8.2
11.9 | | | | | 1.0 | 1.9 | J.L | 3.0 | 10.7 | | | | | Neck Vel m/s
TP Pa | 1.57
6 | 2.10
11 | 2.62
18 | 3.15
25 | 3.67
35 | 4.19
45 | 4.72
57 | |--------------------------------|--|---|---|---|---|---|---|---| | Return NC+5 | Total m ³ /s | 0.106 | 0.142
13 | 0.177
20 | 0.212
26 | 0.248
30 | 0.283
34 | 0.319
38 | | Factors -SP=4.1 TP | m³/s side
throw m | A B 0.033 0.020 2.1 1.5 2.7 1.8 3.7 2.7 | A B 0.044 0.026 2.4 1.8 3.1 2.1 4.3 3.1 | A B 0.055 0.033 2.7 2.1 3.4 2.4 4.9 3.4 | A B 0.067 0.040 3.1 2.1 3.7 2.7 5.2 3.7 | A B 0.077 0.046 3.4 2.4 4 2.7 5.5 4 | A B 0.089 0.053 3.4 2.4 4.3 3.1 6.1 4.3 | A B 0.100 0.060 3.7 2.7 4.6 3.4 6.4 4.6 | | A 31 | m³/s side
throw m | 0.043 0.020
2.7 1.5
3.4 1.8
4.9 2.7 | 0.057 26.000
3.1 1.8
4.0 2.1
5.5 3.1 | 0.072 0.033
3.4 2.1
4.6 2.4
6.4 3.4 | 0.086 0.040
3.7 2.1
4.9 2.7
6.7 3.7 | 0.101 0.046
4.0 2.4
5.2 2.7
7.3 4.0 | 0.115 0.053
4.3 2.4
5.5 3.1
7.6 4.3 | 0.129 0.060
4.6 2.7
6.1 3.4
8.2 4.6
0.106 0.106 | | A B 33 | throw m
m³/s side | 2.4 2.4
3.1 3.1
4.0 4.0
0.033 0.036 | 2.7 2.7
3.4 3.4
4.6 4.6
0.044 0.049 | 3.1 3.1
4.0 4.0
5.2 5.2
0.055 0.060 | 3.4 3.4
4.3 4.3
5.5 5.5
0.067 0.073 | 3.7 3.7
4.6 4.6
6.1 6.1
0.077 0.085 | 4.0 4.0
4.9 4.9
6.4 6.4
0.089 0.097 | 4.3 4.3
5.2 5.2
7.0 7.0
0.100 0.109
4.3 4.6 | | A | m³/s side
throw m | 3.1 3.1
4.3 4.6
0.053
3.1 | 3.4 3.7
4.9 5.2
0.071
3.7 | 4.0 4.3
5.5 5.8
0.089
4.3 | 4.3 4.6
6.1 6.4
0.106
4.6 | 4.6 4.9
6.4 6.7
0.124
4.9 | 4.9 5.2
7.0 7.3
0.142
5.2 | 5.2 5.5
7.3 7.9
0.159
5.5 | | A | m³/s side
throw m | 3.7
5.2
0.067 0.040
3.1 2.4
3.7 3.1 | 4.3
6.1
0.089 0.055
3.7 2.7
4.3 3.4 | 4.9
7.0
0.111 0.067
4.3 3.1
4.9 4.0 | 5.2
7.6
0.133 0.080
4.6 3.4
5.2 4.3 | 5.5
7.9
0.155 0.093
4.9 3.7
5.5 4.6 | 6.1
8.5
0.177 0.106
5.2 4.0
6.1 4.9 | 6.4
9.2
0.199 0.119
5.5 4.3
6.4 5.2 | | 55 A 53 | m³/s side
throw m | 5.2 4.0
0.106
3.7
4.6
6.4 | 6.1 4.6
0.142
4.3
5.2 | 7.0 5.2
0.177
4.9
5.8 | 7.6 5.5
0.212
5.2
6.4 | 7.9 6.1
0.243
5.5
6.7 | 8.5 6.4
0.283
6.1
7.3 | 9.2 7.0
0.319
6.4
7.9
11.0 | | Return NC+4 Factors -SP=1.8 TP | Total m³/s
NC | 0.133
-
A B | 0.177
14
A B | 0.222
21
A B | 0.266
27
A B |
0.310
31
A B | 0.354
35
A B | 0.400
39
A B
0.140 0.060 | | 42 B 43 | throw m
m³/s side | 2.7 1.5
3.4 1.8
4.9 2.7
0.033 0.033 | 3.1 1.8
4.0 2.1
5.5 3.1
0.044 0.044 | 3.4 2.1
4.6 2.4
6.4 3.4
0.055 0.055 | 3.7 2.1
4.9 2.7
6.7 3.7
0.067 0.067 | 4.0 2.4
5.2 2.7
7.3 4.0
0.077 0.077 | 4.3 2.4
5.5 3.1
7.6 4.3
0.089 0.089 | 4.6 2.7
6.1 3.4
8.2 4.6
0.100 0.100 | | 45 * | m³/s side
throw m | 3.1 3.1
4.3 4.3
0.057 0.020
3.1 1.5 | 3.4 3.4
4.9 4.9
0.075 0.026
3.7 1.8 | 4.0 4.0
5.5 5.5
0.094 0.033
4.3 2.1 | 4.3 4.3
6.1 6.1
0.113 0.040
4.6 2.1 | 4.6 4.6
6.4 6.4
0.132 0.046
4.9 2.4 | 4.9 4.9
7.0 7.0
0.151 0.053
5.2 2.4 | 4.3 4.3
5.2 5.2
7.3 7.3
0.169 0.060
5.5 2.7 | | B A | m³/s side
throw m | 3.7 1.8
5.2 2.7
0.039 0.055
2.7 2.1
3.1 2.7 | 4.3 2.1
6.1 3.1
0.052 0.073
3.1 2.4
3.7 3.1 | 4.9 2.4
7.0 3.4
0.065 0.093
3.4 2.7
4.3 3.4 | 5.2 2.7
7.6 3.7
0.078 0.110
3.7 3.1
4.6 3.7 | 5.5 2.7
7.9 4.0
0.091 0.128
4.0 3.4
4.9 4.0 | 6.1 3.1
8.5 4.3
0.103 0.147
4.3 3.4
5.2 4.3 | 6.4 3.4
9.2 4.6
0.117 0.166
4.6 3.7
5.5 4.6 | | B 37 | m³/s side
throw m | 4.6 3.7
0.046 0.043
2.7 2.7
3.4 3.4 | 5.2 4.3
0.061 0.058
3.1 3.1
4.0 4.0 | 5.8 4.9
0.076 0.072
3.4 3.4
4.6 4.6 | 6.4 5.2
0.092 0.086
3.7 3.7
4.9 4.9 | 6.7 5.5
0.107 0.100
4.0 4.0
5.2 5.2 | 7.3 6.1
0.123 0.115
4.3 4.3
5.5 5.5 | 7.9 6.4
0.138 0.129
4.6 4.6
6.1 6.1
8.2 8.2 | | A 22, 23 | m³/s side
throw m | 0.066
3.1
3.7
5.2 | 0.088
3.7
4.3
6.1 | 0.111
4.3
4.9
7.0 | 0.133
4.6
5.2
7.6 | 0.155
4.9
5.5
7.9 | 0.177
5.2
6.1
8.5 | 0.199
5.5
6.4
9.2 | | 52 55 54 53 | m³/s side
throw m
m³/s side | 3.4 2.4
4.3 3.1
5.8 4.0
0.133 | 4.0 2.7
4.9 3.4
6.7 4.6
0.177 | 4.6 3.1
5.5 4.0
7.6 5.2
0.222 | 4.9 3.4
6.1 4.3
8.2 5.5
0.266 | 5.2 3.7
6.4 4.6
8.8 6.1
0.310 | 5.5 4.0
7.0 4.9
9.5 6.4
0.354 | 0.279 0.119
6.1 4.3
7.3 5.2
10.1 7.0
0.400 | | Return NC+4 | throw m Total m³/s | 4.0
4.9
7.0
0.159 | 4.6
5.5
7.9
0.212
15 | 5.2
6.4
9.2
0.265
22 | 5.5
6.7
9.8
0.319
28 | 6.1
7.3
10.4
0.372
32 | 6.4
7.6
11.3
0.425
36 | 7.0
8.2
11.9
0.478
40 | | Factors -SP=2.2 TP | m³/s side
throw m | A B 0.060 0.020 3.1 1.5 | A B 0.080 0.026 3.7 1.8 | A B 0.100 0.033 4.3 2.1 | A B 0.120 0.040 4.6 2.1 | A B 0.140 0.046 4.9 2.4 | A B 0.160 0.053 5.2 2.4 | A B 0.179 0.060 5.5 2.7 6.4 3.4 | | B 42 A 45 * | m³/s side
throw m | 5.2 2.7
0.033 0.049
2.4 2.7
3.1 3.4 | 6.1 3.1
0.044 0.062
2.7 3.1
3.4 4.0 | 7.0 3.4
0.055 0.077
3.1 3.4
4.0 4.6 | 7.6 3.7
0.067 0.093
3.4 3.7
4.3 4.9 | 7.9 4.0
0.077 0.109
3.7 4.0
4.6 5.2 | 8.5 4.3
0.089 0.124
4.0 4.3
4.9 5.5 | 9.2 4.6
0.100 0.140
4.3 4.6
5.2 6.1 | | 31 | m³/s side
throw m | 0.069 0.020
3.1 1.5
3.7 1.8
5.2 2.7 | 0.093 0.026
3.7 1.8
4.3 2.1
6.1 3.1 | 0.116 0.033
4.3 2.1
4.9 2.4
7.0 3.4 | 0.139 0.040
4.6 2.1
5.2 2.7
7.6 3.7 | 0.163 0.046
4.9 2.4
5.5 2.7
7.9 4.0 | 0.186 0.053
5.2 2.4
6.1 3.1
8.5 4.3 | 7.3 8.2
0.209 0.060
5.5 2.7
6.4 3.4
9.2 4.6 | | 33 | m³/s side
throw m
m³/s side | 0.079 0.040
2.4 2.4
3.1 3.1
4.3 4.0
0.046 0.056 | 0.106 0.053
2.7 2.7
3.4 3.4
4.9 4.6
0.061 0.075 | 0.133 0.067
3.1 3.1
4.0 4.0
5.5 5.2
0.077 0.094 | 0.159 0.080
3.4 3.4
4.3 4.3
6.1 5.5
0.092 0.113 | 0.186 0.093
3.7 3.7
4.6 4.6
6.4 6.1
0.107 0.131 | 0.212 0.106
4.0 4.0
4.9 4.9
7.0 6.4
0.123 0.150 | 0.239 0.119
4.3 4.3
5.2 5.2
7.3 7.0
0.138 0.169 | | ▼ . | throw m
m³/s side | 2.7 3.1
3.4 3.7
4.9 5.2
0.077 | 3.1 3.7
4.0 4.3
5.5 6.1
0.106 | 3.4 4.3
4.6 4.9
6.4 7.0
0.133 | 3.7 4.6
4.9 5.2
6.7 7.6
0.159 | 4.0 4.9
5.2 5.5
7.3 7.9
0.186 | 4.3 5.2
5.5 6.1
7.6 8.5
0.212 | 4.6 5.5
6.1 6.4
8.2 9.2
0.239
6.1 | | | m³/s side
throw m | 4.3
5.8
0.119 0.040
3.7 2.4 | 4.9
6.7
0.160 0.053
4.3 2.7 | 5.5
7.6
0.199 0.067
4.9 3.1 | 6.1
8.2
0.239 0.080
5.2 3.4 | 6.4
8.8
0.279 0.093
5.5 3.7 | 7.0
9.5
0.319 0.106
6.1 4.0 | 7.3
10.1
0.358 0.119
6.4 4.3 | | 55 23 53 | m³/s side
throw m | 6.4 4.0
0.159
4.0
4.9 | 7.3 4.6
0.212
4.6
5.5 | 8.2 5.2
0.265
5.2
6.4 | 9.2 5.5
0.319
5.5
6.7 | 9.8 6.1
0.372
6.1
7.3 | 10.4 6.4
0.425
6.4
7.6 | 7.9 5.2
11.0 7.0
0.478
7.0
8.2
11.9 | | | Factors -SP=4.1 TP AA 43 B 31 AA 22, 23 B AA 52 B AA 54 52 B A 54 55 A 53 12, 13 Return NC+4 Factors -SP=1.8 TP AA 45 * B 31 A 22, 23 B AA 37 A 37 A 37 A 45 * B 31 A 37 A 45 * A 37 A 45 * B 31 B 33 B 34 B 34 A 37 | Factors SP=4.1 TP A B 42 A B 31 B A 33 B A 37 A 22, 23 B A 52 A 53 Return NC+4 Factors -SP=1.8 TP A 45 * B 31 Return NC+4 Factors -SP=1.8 TP A 45 * B 31 Return NC+4 Factors -SP=1.8 TP A 45 * A 53 B A 52 B A 54 B 31 A 45 * A 53 B A 55 B A 54 B A 45 * A 55 B A 54 B A 45 * A 55 B A 54 B A 45 * A 55 B A 54 B A 45 * A 55 B A 54 B A 45 * A 55 B A 54 B A 45 * A 55 B A 54 B A 45 * B A 65 B A 7 A 7 B A | Sectors SP=4.1 TP | Pactors SP=4.1TP | Factors | Factors -SP-4.1TP | Factors | Factor Special TP | $^{^{\}ast}$ These cores are constructed to give as near as possible equal air flow in A & B directions. | Size | Patterns | Neck Vel m/s | 1.57 | 2.10 | 2.62 | 3.15 | 3.67 | 4.19 | 4.72 | |-------------------------------|-----------------------------------|---|---|---|---|---|---|---|---| | in mm | Return NC+5 | TP Pa Total m³/s | 6
0.186 | 11
0.247 | 18
0.309 | 25
0.371 | 35
0.433 | 45
0.496 | 57
0.557 | | | Factors -SP=2.6 TP | NC | -
А В | 15
A B | 22
A B | 28
A B | 32
A B | 36
A B | 40
A B | | 225
x
525 | A 43 | m³/s side
throw m | 0.073 0.020
3.4 1.5
4.3 1.8
5.8 2.7 | 0.097 0.026
4 1.8
4.9 2.1
6.7 3.1 | 0.122 0.033
4.6 2.1
5.5 2.4
7.6 3.4 | 0.146 0.040
4.9 2.1
6.1 2.7
8.2 3.7 | 0.170 0.046
5.2 2.4
6.4 2.7
8.8 4 | 0.195 0.053
5.5 2.4
7.0 3.1
9.5 4.3 | 0.219 0.060
6.1 2.7
7.3 3.4
10.1 4.6 | | | 45 * | m³/s side
throw m | 0.046 0.046
2.7 2.7
3.4 3.4
4.9 4.9 | 0.062 0.062
3.1 3.1
4.0 4.0
5.5 5.5 | 0.077 0.077
3.4 3.4
4.6 4.6
6.4 6.4 | 0.093 0.093
3.7 3.7
4.9 4.9
6.7 6.7 | 0.108 0.108
4.0 4.0
5.2 5.2
7.3 7.3 | 0.123 0.123
4.3 4.3
5.5 5.5
7.6 7.6 | 0.139 0.139
4.6 4.6
6.1 6.1
8.2 8.2 | | | A 31 | m³/s side
throw m | 0.083 0.020
3.4 1.5
4.3 1.8
5.8 2.7 | 0.111 0.026
4.0 1.8
4.9 2.1
6.7 3.1 | 0.138 0.033
4.6 2.1
5.5 2.4
7.6 3.4 | 0.166 0.040
4.9 2.1
6.1 2.7
8.2 3.7 | 0.194 0.046
5.2 2.4
6.4 2.7
8.8 4.0 | 0.221 0.053
5.5 2.4
7.0 3.1
8.5 4.3 | 0.249 0.060
6.1 2.7
7.3 3.4
10.1 4.6 | | | A 33 | m³/s side
throw m | 0.106 0.040
3.7 2.4
4.6 3.1
6.4 4.0 | 0.142 0.053
4.3 2.7
5.2 3.4
7.3 4.6 | 0.177 0.067
4.9 3.1
5.8 4.0
8.2 5.2 | 0.212 0.080
5.2 3.4
6.4 4.3
9.2 5.5 | 0.247 0.093
5.5 3.7
6.7 4.6
9.8 6.1 | 0.282 0.106
6.1 4.0
7.3 4.9
10.4 6.4 | 0.318 0.119
6.4 4.3
7.9 5.2
11.0 7.0 | | | B 37 | m³/s side
throw m | 0.060 0.063
3.1 3.1
3.7 3.7
5.2 5.2 | 0.080 0.083
3.7 3.7
4.3 4.3
6.1 6.1 | 0.100 0.105
4.3 4.3
4.9 4.9
7.0 7.0 | 0.119 0.126
4.6 4.6
5.2 5.2
7.6 7.6 | 0.139 0.147
4.9 4.9
5.5 5.5
7.9 7.9 | 0.159 0.168
5.2 5.2
6.1 6.1
8.5 8.5 | 0.179 0.188
5.5 5.5
6.4 6.4
9.2 9.2 | | AD | ^A 22, 23 | m³/s side
throw m | 0.093
3.4
4.3
5.8 | 0.124
4.0
4.9
6.7 | 0.154
4.6
5.5
7.6 | 0.186
4.9
6.1
8.2 |
0.216
5.2
6.4
8.8 | 0.248
5.5
7.0
9.5 | 0.279
6.1
7.3
10.1 | | AD
0.118
m ² | 52
55
55
54
53 | m³/s side
throw m | 0.145 0.040
4.0 2.4
4.9 3.1
7.0 4.0
0.186 | 0.195 0.053
4.6 2.7
5.5 3.4
7.9 4.6
0.247 | 0.243 0.067
5.2 3.1
6.4 4.0
9.2 5.2
0.309 | 0.291 0.080
5.5 3.4
6.7 4.3
9.8 5.5
0.371 | 0.340 0.093
6.1 3.7
7.3 4.6
10.4 6.1
0.433 | 0.389 0.106
6.4 4.0
7.6 4.9
11.3 6.4
0.496 | 0.438 0.119
7.0 4.3
8.2 5.2
11.9 7.0
0.557 | | | 12, 13 | m³/s side
throw m
Total m³/s | 4.3
5.2
7.3 | 4.9
6.1
8.5 | 5.5
7.0
9.8 | 0.371
6.1
7.6
10.4 | 0.433
6.4
7.9
11.3 | 7.0
8.5
12.2 | 7.3
9.2
12.8 | | | Return NC+5
Factors -SP=3.0 TP | NC | 0.212
-
A B | 0.283
16
A B | 23
A B | 29
A B | 33
A B | 0.566
37
A B | 0.637
41
A B | | 225
x
600 | 42 • B 43 | m³/s side
throw m | 0.086 0.020
3.4 1.5
4.3 1.8
5.8 2.7 | 0.115 0.026
4.0 1.8
4.9 2.1
6.7 3.1 | 0.144 0.033
4.6 2.1
5.5 2.4
7.6 3.4 | 0.173 0.040
4.9 2.1
6.1 2.7
8.2 3.7 | 0.202 0.046
5.2 2.4
6.4 2.7
8.8 4.0 | 0.230 0.053
5.5 2.4
7.0 3.1
9.5 4.3 | 0.259 0.060
6.1 2.7
7.3 3.4
10.1 4.6 | | | 45 * | m³/s side
throw m
m³/s side | 0.047 0.060
2.7 3.1
3.4 3.7
4.9 5.2
0.096 0.020 | 0.062 0.080
3.1 3.7
4.0 4.3
5.5 6.1
0.128 0.026 | 0.077 0.100
3.4 4.3
4.6 4.9
6.4 7.0
0.161 0.033 | 0.093 0.119
3.7 4.6
4.9 5.2
6.7 7.6
0.193 0.040 | 0.109 0.139
4.0 4.9
5.2 5.5
7.3 7.9
0.225 0.046 | 0.124 0.159
4.3 5.2
5.5 6.1
7.6 8.5
0.257 0.053 | 0.140 0.179
4.6 5.5
6.1 6.4
8.2 9.2
0.286 0.060 | | | 31 | throw m | 3.4 1.5
4.3 1.8
5.8 2.7
0.133 0.040 | 4.0 1.8
4.9 2.1
6.7 3.1
0.178 0.053 | 4.6 2.1
5.5 2.4
7.6 3.4
0.221 0.067 | 4.9 2.1
6.1 2.7
8.2 3.7
0.265 0.080 | 5.2 2.4
6.4 2.7
8.8 4.0
0.310 0.093 | 5.5 2.4
7.0 3.1
9.5 4.3
0.354 0.106 | 6.1 2.7
7.3 3.4
10.1 4.6
0.398 0.119 | | | 33 | throw m | 4.0 2.4
4.9 3.1
7.0 4.0
0.073 0.069 | 4.6 2.7
5.5 3.4
7.9 4.6
0.097 0.093 | 5.2 3.1
6.4 4.0
9.2 5.2
0.122 0.116 | 5.5 3.4
6.7 4.3
9.8 5.5
0.146 0.139 | 6.1 3.7
7.3 4.6
10.4 6.1
0.170 0.162 | 6.4 4.0
7.6 4.9
11.3 6.4
0.195 0.186 | 7.0 4.3
8.2 5.2
11.9 7.0
0.220 0.209 | | | B 37 | throw m | 3.1 3.1
3.7 3.7
5.2 5.2
0.106 | 3.7 3.7
4.3 4.3
6.1 6.1
0.142 | 4.3 4.3
4.9 4.9
7.0 7.0
0.177 | 4.6 4.6
5.2 5.2
7.6 7.6
0.212 | 4.9 4.9
5.5 5.5
7.9 7.9
0.248 | 5.2 5.2
6.1 6.1
8.5 8.5
0.283 | 5.5 5.5
6.4 6.4
9.2 9.2
0.319 | | AD | A 22, 23 | throw m
m³/s side | 3.7
4.6
6.4
0.172 0.040 | 4.3
5.2
7.3
0.230 0.053 | 4.9
5.8
8.2
0.288 0.067 | 5.2
6.4
9.2
0.345 0.080 | 5.5
6.7
9.8
0.403 0.093 | 6.1
7.3
10.4
0.460 0.106 | 6.4
7.9
11.0
0.518 0.119 | | 0.135
m² | 52
55
55
53 | throw m
m³/s side | 4.3 2.4
5.2 3.1
7.3 4.0
0.212 | 4.9 2.7
6.1 3.4
8.5 4.6
0.283 | 5.5 3.1
7.0 4.0
9.8 5.2
0.354 | 6.1 3.4
7.6 4.3
10.4 5.5
0.425 | 6.4 3.7
7.9 4.6
11.3 6.1
0.406 | 7.0 4.0
8.5 4.9
12.2 6.4
0.566 | 7.3 4.3
9.2 5.2
12.8 7.0
0.637 | | | 12, 13 | throw m | 4.3
5.2
7.3 | 4.9
6.1
8.5 | 5.5
7.0
9.8 | 6.1
7.6
10.4 | 6.4
7.9
11.3 | 7.0
8.5
12.2 | 7.3
9.2
12.8 | | | Return NC+3
Factors -SP=1.7 TP | Total m³/s
NC | 0.177
-
A B | 0.236
16
A B | 0.295
23
A B | 0.354
29
A B | 0.413
33
A B | 0.472
37
A B | 0.531
41
A B | | 300
x
375 | B 42 | m³/s side
throw m | 0.053 0.035
2.4 1.8
3.4 2.4
4.3 3.1 | 0.071 0.047
2.7 2.1
3.4 2.7
4.9 3.7 | 0.088 0.059
3.1 2.4
4.0 3.1
5.5 4.3 | 0.106 0.071
3.4 2.7
4.3 3.4
6.1 4.6 | 0.124 0.083
3.7 2.7
4.6 3.7
6.4 4.9 | 0.142 0.094
4.0 3.1
4.9 4.0
7.0 5.2 | 0.159 0.106
4.3 3.4
5.2 4.3
7.3 5.5 | | | A 31 | m³/s side
throw m | 0.071 0.035
3.1 1.8
3.7 2.4
5.2 3.1
0.061 0.055 | 0.094 0.047
3.7 2.1
4.3 2.7
6.1 3.7
0.081 0.074 | 0.118 0.059
4.3 2.4
4.9 3.1
7.0 4.3
0.102 0.092 | 0.142 0.071
4.6 2.7
5.2 3.4
7.6 4.6
0.122 0.111 | 0.165 0.083
4.9 2.7
5.5 3.7
7.9 4.9
0.142 0.129 | 0.189 0.094
5.2 3.1
6.1 4.0
8.5 5.2
0.162 0.147 | 0.212 0.106
5.5 3.4
6.4 4.3
9.2 5.5
0.183 0.166 | | | A 33 | m ³ /s side
throw m
m ³ /s side | 0.061 0.055
2.7 2.1
3.1 2.7
4.6 3.7
0.053 0.062 | 0.081 0.074 3.1 2.4 3.7 3.1 5.2 4.3 0.071 0.083 | 3.4 2.7
4.3 3.4
5.8 4.9
0.088 0.103 | 0.122 0.111
3.7 3.1
4.6 3.7
6.4 5.2
0.106 0.124 | 4.0 3.4
4.9 4.0
6.7 5.5
0.124 0.144 | 0.162 0.147
4.3 3.4
5.2 4.3
7.3 6.1
0.142 0.165 | 0.183 0.166
4.6 3.7
5.5 4.6
7.9 6.4
0.159 0.186 | | | B 37 | throw m | 3.1 3.1
3.7 3.7
5.2 5.2
0.088 | 3.7 3.7
4.3 4.3
6.1 6.1
0.118 | 4.3 4.3
4.9 4.9
7.0 7.0
0.147 | 4.6 4.6
5.2 5.2
7.6 7.6
0.177 | 4.9 4.9
5.5 5.5
7.9 7.9
0.207 | 5.2 5.2
6.1 6.1
8.5 8.5
0.236 | 5.5 5.5
6.4 6.4
9.2 9.2
0.266 | | AD | A 22, 23 | throw m | 3.4
4.3
5.8
0.106 0.071 | 4.0
4.9
6.7
0.142 0.094 | 4.6
5.5
7.6
0.177 0.118 | 4.9
6.1
8.2
0.212 0.142 | 5.2
6.4
8.8
0.248 0.165 | 5.5
7.0
9.5
0.283 0.189 | 6.1
7.3
10.1
0.319 0.212 | | AD
0.112
m ² | 52
55
55
54
53 | throw m
m³/s side | 3.7 2.7
4.6 3.4
6.4 4.9
0.177 | 4.3 3.1
5.2 4.0
7.3 5.5
0.236 | 4.9 3.4
5.8 4.6
8.2 6.4
0.295 | 5.2 3.7
6.4 4.9
9.2 6.7
0.354 | 5.5 4.0
6.7 5.2
9.8 7.3
0.413 | 6.1 4.3
7.3 5.5
10.4 7.6
0.472 | 6.4 4.6
7.9 6.1
11.0 8.2
0.531 | | | 12, 13 | throw m | 4.3
5.2
7.3 | 4.9
6.1
8.5 | 5.5
7.0
9.8 | 6.1
7.6
10.4 | 6.4
7.9
11.3 | 7.0
8.5
12.2 | 7.3
9.2
12.8 | $^{^{\}ast}$ These cores are constructed to give as near as possible equal air flow in A & B directions. # Performance Data – CMP | Size | Patterns | Neck Vel m/s | 1.57 | 2.10 | 2.62 | 3.15 | 3.67 | 4.19 | 4.72 | |-------------------------------|---------------------------------------|----------------------|--|--|--|--|--|---|---| | in mm | Return NC+4 | TP Pa Total m³/s | 6
0.212 | 0.283 | 18
0.354 | 25
0.425 | 35
0.496 | 45
0.566 | 57
0.637 | | | Factors -SP=2.0 TP | NC | A B 0.071 0.035 | 17
A B
0.094 0.047 | A B 0.118 0.059 | A B 0.142 0.071 | 34
A B
0.165 0.083 | 38
A B
0.189 0.094 | 42
A B
0.212 0.106 | | 300
x
450 | A A A A A A A A A A A A A A A A A A A | m³/s side
throw m | 3.1 1.8
3.7 2.4
5.2 3.1 | 3.7 2.1
4.3 2.7
6.1 3.7 | 4.3 2.4
4.9 3.1
7 4.3 | 4.6 2.7
5.2 3.4
7.6 4.6 | 4.9 2.7
5.5 3.7
7.9 4.9 | 5.2 3.1
6.1 4
8.5 5.2 | 5.5 3.4
6.4 4.3
9.2 5.5 | | | 45 ∗ | m³/s side
throw m | 0.053 0.053
3.1 3.1
3.7 3.7 | 0.071 0.071
3.7 3.7
4.3 4.3 | 0.088 0.088
4.3 4.3
4.9 4.9 | 0.106 0.106
4.6 4.6
5.2 5.2 | 0.124 0.124
4.9 4.9
5.5 5.5 | 0.142 0.142
5.2 5.2
6.1 6.1 | 0.159 0.159
5.5 5.5
6.4 6.4 | | | 31 | m³/s side
throw m | 5.2 5.2
0.088 0.035
3.4 1.8
4.3 2.4 | 6.1 6.1
0.118 0.047
4.0 2.1
4.9 2.7 | 7.2 7.2
0.147 0.059
4.6 2.4
5.5 3.1 | 7.6 7.6
0.177 0.071
4.9 2.7
6.1 3.4 | 7.9 7.9
0.206 0.083
5.2 2.7
6.4 3.7 | 8.5 8.5
0.236 0.094
5.5 3.1
7.0 4.0 | 9.2 9.2
0.265 0.106
6.1 3.4
7.3 4.3 | | | ■ B | m³/s side
throw m | 5.8 3.1
0.067 0.079
2.7 2.4 | 6.7 3.7
0.088 0.106
3.1 2.7 | 7.6 4.3
0.111 0.133
3.4 3.1 | 8.2 4.6
0.133 0.159
3.7 3.4 | 8.8 4.9
0.155 0.186
4.0 3.7 | 9.5 5.2
0.177 0.212
4.3 4.4 | 10.1 5.5
0.199 0.239
4.6 4.3 | | | 33
B | m³/s side | 3.4 3.1
4.9 4.3
0.071 0.071
3.1 3.1 | 4.0 3.4
5.5 4.9
0.094 0.094
3.7 3.7 | 4.6 4.0
6.4 5.5
0.118 0.118
4.3 4.3 | 4.9 4.3
6.7 6.1
0.142 0.142
4.6 4.6 | 5.2 4.6
7.3 6.4
0.165 0.165
4.9 4.9 | 5.5 4.9
7.6 7.0
0.189 0.189
5.2 5.2 | 6.1 5.2
8.2 7.3
0.212 0.212
5.5 5.5 | | | 37 | throw m
m³/s side | 3.7 3.7
5.2 5.2
0.106 | 4.3 4.3
6.1 6.1
0.142 | 4.9 4.9
7.0 7.0
0.177 | 5.2 5.2
7.6 7.6
0.212 | 5.5 5.5
7.9 7.9
0.248 | 6.1 6.1
8.5 8.5
0.283 | 6.4 6.4
9.2 9.2
0.319 | | AB | ^A 22, 23 | throw m | 3.7
4.6
6.4
0.142 0.071 | 4.3
5.2
7.3
0.189 0.094 | 4.9
5.8
8.2
0.236 0.118 | 5.2
6.4
9.2
0.283 0.142 | 5.5
6.7
9.8
0.330 0.165 | 6.1
7.3
10.4
0.378 0.189 | 6.4
7.9
11.0
0.425 0.212 | | AD
0.135
m ² | 52 54
55 55 54 | m³/s side
throw m | 3.1 2.7
4.9 3.4
7.0 4.9 | 4.6 3.1
5.5 4.0
7.9 5.5 | 5.2 3.4
6.4 4.6
9.2 6.4 | 5.5 3.7
6.7 4.9
9.8 6.7 | 6.1 4.0
7.3 5.2
10.4 7.3 | 6.4 4.3
7.6 5.5
11.3 7.6 | 7.0 4.6
8.2 6.1
11.9 8.2 | | | 12, 13 | m³/s side
throw m | 0.212
4.3
5.2
7.3 | 0.283
4.9
6.1
8.5 | 0.354
5.5
7.0
9.8 | 0.425
6.1
7.6
10.4 | 0.496
6.4
7.9
11.3 | 0.566
7.0
8.5
12.2 | 0.637
7.3
9.2
12.8 | | | Return NC+6 Factors -SP=2.3 TP | Total m³/s
NC |
0.248
-
A B | 0.330
17
A B | 0.413
24
A B | 0.496
30
A B | 0.578
34
A B | 0.661
38
A B | 0.743
42
A B | | 300
x
525 | A 43 | m³/s side
throw m | 0.088 0.035
3.4 1.8
4.3 2.4
5.8 3.1 | 0.118 0.047
4.0 2.1
4.9 2.7
6.7 3.7 | 0.147 0.059
4.6 2.4
5.5 3.1
7.6 4.3 | 0.177 0.071
4.9 2.7
6.1 3.4
8.2 4.6 | 0.206 0.083
5.2 2.7
6.4 3.7
8.8 4.9 | 0.236 0.094
5.5 3.1
7.0 4.0
9.5 5.2 | 0.265 0.106
6.1 3.4
7.3 4.3
10.1 5.5 | | -323 | B 45 * | m³/s side
throw m | 0.053 0.071
3.1 3.1
3.7 3.7 | 0.071 0.094
3.7 3.7
4.3 4.3 | 0.088 0.118
4.3 4.3
4.9 4.9 | 0.106 0.142
4.6 4.6
5.2 5.2 | 0.124 0.165
4.9 4.9
5.5 5.5 | 0.142 0.189
5.2 5.2
6.1 6.1 | 0.159 0.212
5.5 5.5
6.4 6.4 | | | 31 | m³/s side
throw m | 5.2 5.2
0.106 0.035
3.7 1.8
4.6 2.4 | 6.1 6.1
0.142 0.047
4.3 2.1
5.2 2.7 | 7.0 7.0
0.177 0.059
4.9 2.4
5.8 3.1 | 7.6 7.6
0.212 0.071
5.2 2.7
6.4 3.4 | 7.9 7.9
0.248 0.083
5.5 2.7
6.7 3.7 | 8.5 8.5
0.283 0.094
6.1 3.1
7.3 4.0 | 9.2 9.2
0.319 0.106
6.4 3.4
7.9 4.3 | | | ■ A A | m³/s side
throw m | 6.4 3.1
0.070 0.109
2.7 2.7 | 7.3 3.7
0.093 0.144
3.1 3.1 | 8.2 4.3
0.116 0.180
3.4 3.4 | 9.2 4.6
0.139 0.217
3.7 3.7 | 9.8 4.9
0.163 0.253
4.0 4.0 | 10.4 5.3
0.186 0.289
4.3 4.3 | 11.0 5.5
0.209 0.325
4.6 4.6 | | | 33
A B | m³/s side
throw m | 3.4 3.4
4.9 4.9
0.088 0.079
3.4 3.4 | 4.0 4.0
5.5 5.5
0.118 0.106
4.0 4.0 | 4.6 4.6
6.4 6.4
0.148 0.133
4.6 4.6 | 4.9 4.9
6.7 6.7
0.177 0.159
4.9 4.9 | 5.2 5.2
7.3 7.3
0.206 0.186
5.2 5.2 | 5.5 5.5
7.6 7.6
0.236 0.212
5.5 5.5 | 6.1 6.1
82.0 8.2
0.265 0.239
6.1 6.1 | | | 37 | m³/s side | 4.3 4.3
5.8 5.8
0.124 | 4.9 4.9
6.Y 6.7
0.165 | 5.5 5.5
7.6 7.6
0.206 | 6.1 6.1
8.2 8.2
0.248 | 6.4 6.4
8.8 8.8
0.289 | 7.0 7.0
9.5 9.5
0.330 | 7.3 7.3
10.1 10.1
0.372 | | AD | ^A 22, 23 | throw m
m³/s side | 3.7
4.6
6.4
0.177 0.071 | 4.3
5.2
7.3
0.236 0.094 | 4.9
5.8
8.2
0.295 0.118 | 5.2
6.4
9.2
0.354 0.142 | 5.5
6.7
9.8
0.413 0.165 | 6.1
7.3
10.4
0.472 0.189 | 6.4
7.9
11.0
0.531 0.212 | | AD
0.157
m ² | 52 54
55 53 | m³/s side
throw m | 4.3 2.7
5.2 3.4
7.3 4.9
0.248 | 4.9 3.1
6.1 4.0
8.5 5.5
0.330 | 5.5 3.4
7.0 4.6
9.8 6.4
0.413 | 6.1 3.7
7.6 4.9
10.4 6.7
0.496 | 6.4 4.0
7.9 5.2
11.3 7.3
0.578 | 7.0 4.3
8.5 5.5
12.2 7.6
0.661 | 7.3 4.6
9.2 6.1
12.8 8.2
0.743 | | | 12, 13 | m³/s side
throw m | 0.248
4.6
5.5
7.9 | 0.330
5.2
6.4
9.2 | 0.413
5.8
7.3
10.4 | 0.496
6.4
7.9
11.3 | 0.578
6.7
8.5
12.2 | 7.3
9.2
12.8 | 0.743
7.9
9.8
13.7 | | | Return NC+6 Factors -SP=2.7 TP | Total m³/s
NC | 0.283
9
A B | 0.378
18
A B | 0.472
25
A B | 0.566
31
A B | 0.661
35
A B | 0.755
39
A B | 0.850
43
A B | | 300
x
600 | 42 43 A43 | m³/s side
throw m | 0.106 0.035
3.7 1.8
4.6 2.4
6.4 3.1 | 0.142 0.047
4.3 2.1
5.2 2.7
7.3 3.7 | 0.177 0.059
4.9 2.4
5.8 3.1
8.2 4.3 | 0.212 0.071
5.2 2.7
6.4 3.4
9.2 4.6 | 0.248 0.083
5.5 2.7
6.7 3.7
9.8 4.9 | 0.283 0.094
6.1 3.1
7.3 4.0
10.4 5.2 | 0.319 0.106
6.4 3.4
7.9 4.3
11.0 5.5 | | | 45 * | m³/s side
throw m | 0.071 0.071
3.1 3.1
3.7 3.7 | 0.094 0.094
3.7 3.7
4.3 4.3 | 0.118 0.118
4.3 4.3
4.9 4.9 | 0.142 0.142
4.6 4.6
5.2 5.2 | 0.165 0.165
4.9 4.9
5.5 5.5 | 0.189 0.189
5.2 5.2
6.1 6.1 | 0.212 0.212
5.5 5.5
6.4 6.4 | | | 31 | m³/s side
throw m | 5.2 5.2
0.124 0.035
3.7 1.8
4.6 2.4 | 6.1 6.1
0.165 0.047
4.3 2.1
5.2 2.7 | 7.0 7.0
0.206 0.083
4.9 2.4
5.8 3.1 | 7.6 7.6
0.248 0.071
5.2 2.7
6.4 3.4 | 7.9 7.9
0.289 0.083
5.5 2.7
6.7 3.7 | 8.5 8.5
0.330 0.094
6.1 3.1
7.3 4.0 | 9.2 9.2
0.372 0.106
6.4 3.4
7.9 4.3 | | | B | m³/s side
throw m | 6.4 3.1
0.142 0.071
3.1 2.7 | 7.3 3.7
0.189 0.094
3.7 3.1 | 8.2 4.3
0.236 0.118
4.3 3.4 | 9.2 4.6
0.283 0.142
4.6 3.7 | 9.8 4.9
0.330 0.165
4.9 4.0 | 10.4 5.2
0.378 0.189
5.2 4.3 | 11.0 5.5
0.425 0.212
5.5 4.6 | | | 33 A B | m³/s side
throw m | 5.2 4.9
0.088 0.097
3.4 3.4 | 4.3 4.0
6.1 5.5
0.118 0.130
4.0 4.0 | 4.9 4.6
7.0 6.4
0.148 0.162
4.6 4.6 | 7.6 6.7
0.177 0.195
4.9 4.9 | 7.9 7.3
0.206 0.227
5.2 5.2 | 8.5 7.6
0.236 0.259
5.5 5.5 | 9.2 8.2
0.275 0.292
6.1 6.1 | | | B 37 | m³/s side | 4.3 4.3
5.8 5.8
0.142
4.0 | 4.9 4.9
6.7 6.7
0.189
4.6 | 5.5 5.5
7.6 7.6
0.236
5.2 | 6.1 6.1
8.2 8.2
0.283
5.5 | 6.4 6.4
8.8 8.8
0.330
6.1 | 7.0 7.0
9.5 9.5
0.378
6.4 | 7.3 7.3
10.1 10.1
0.425
7.0 | | AD | ^A 22, 23 | throw m
m³/s side | 4.9
7.0
0.212 0.071 | 5.5
7.9
0.283 0.094 | 6.4
9.2
0.354 0.118 | 6.7
9.8
0.425 0.142 | 7.3
10.4
0.496 0.165 | 7.6
11.3
0.566 0.189 | 8.2
11.9
0.637 0.212 | | 0.180
m ² | 52
55
55
54
53 | throw m
m³/s side | 4.3 2.7
5.2 3.4
7.3 4.9
0.283 | 4.9 3.1
6.1 4.0
8.5 5.5
0.378 | 5.5 3.4
7.0 4.6
9.8 6.4
0.472 | 6.1 3.7
7.6 4.9
10.4 6.7
0.566 | 6.4 4.0
7.9 5.2
11.3 7.3
0.661 | 7.0 4.3
8.5 5.5
12.2 7.6
0.775 | 7.3 4.6
9.2 6.1
12.8 8.2
0.850 | | | 12, 13 | throw m | 4.9
6.1
8.5 | 5.8
7.0
9.8 | 6.7
7.9
11.3 | 7.0
8.5
11.9 | 7.6
9.2
12.8 | 8.2
10.1
13.7 | 8.8
10.7
14.6 | $^{^*}$ These cores are constructed to give as near as possible equal air flow in A & B directions. | Size | Patterns | Neck Vel m/s | 1.57 | 2.10 | 2.62 | 3.15 | 3.67 | 4.19 | 4.72 | |-------------------------------|--------------------|---------------------------|--|--|-----------------------------------|--|--|------------------------------------|--| | in mm | Return NC+5 | TP Pa
Total m³/s
NC | 0.265
9 | 0.354
18 | 17
0.442
25 | 0.531
31 | 0.619
35 | 0.708
39 | 0.796
43 | | | Factors -SP=2.1 TP | m³/s side | A B 0.077 0.055 | A B 0.103 0.074 | A B 0.129 0.092 | A B 0.155 0.111 | A B 0.181 0.129 | A B 0.207 0.147 | A B 0.232 0.166 | | 375
x
450 | A 43 | throw m | 2.7 2.1
3.4 2.7
4.9 3.7 | 3.1 2.4
4 3.1
5.5 4.3 | 3.4 2.7
4.6 3.4
6.4 4.9 | 3.7 3.1
4.9 3.7
6.7 5.2 | 4 3.4
5.2 4
7.3 5.5 | 4.3 3.4
5.5 4.3
7.6 6.1 | 4.6 3.7
6.1 4.6
8.2 6.4 | | | A 31 | m³/s side
throw m | 0.105 0.055
3.7 2.1
4.6 2.7 | 0.140 0.074
4.3 2.4
5.2 3.1 | 0.175 0.092
4.9 2.7
5.8 3.4 | 0.210 0.111
5.2 3.1
6.4 3.7 | 0.245 0.129
5.5 3.4
6.7 4.0 | 0.280 0.147
6.1 3.4
7.3 4.3 | 0.315 0.166
6.4 3.7
7.9 4.6 | | | B | m³/s side
throw m | 6.4 3.7
0.093 0.080
3.4 2.4 | 7.3 4.3
0.124 0.106
4.0 2.7 | 8.2 4.9
0.155 0.133
4.6 3.1 | 9.2 5.2
0.186 0.159
4.9 3.4 | 9.8 5.5
0.217 0.186
5.2 3.7 | 10.4 6.1
0.248 0.212
5.5 4.0 | 11.0 6.4
0.279 0.239
6.1 4.3 | | | B 33 | | 4.3 3.1
5.8 4.3
0.077 0.094 | 4.9 3.4
6.7 4.9
0.103 0.126 | 5.5 4.0
7.6 5.5
0.129 0.157 | 6.1 4.3
8.2 6.1
0.154 0.188 | 6.4 4.6
8.8 6.4
0.180 0.220 | 7.0 4.9
9.5 7.0
0.206 0.251 | 7.3 5.2
10.1 7.3
0.232 0.282 | | | ₽ 37 | m³/s side
throw m | 3.4 3.4
4.3 4.3
5.8 5.8 | 4.0 4.0
4.9 4.9
6.7 6.7 | 4.6 4.6
5.5 5.5
7.6 7.6 | 4.9 4.9
6.1 6.1
8.2 8.2 | 5.2 5.2
6.4 6.4
8.8 8.8 | 5.5 5.5
7.0 7.0
9.5 9.5 | 6.1 6.1
7.3 7.3
10.1 10.1 | | | A 22, 23 | m³/s side
throw m | 0.133
4.0
4.9 | 0.177
4.6
5.5 | 0.221
5.2
6.4 | 0.265
5.5
6.7 | 0.310
6.1
7.3 | 0.354
6.4
7.6 | 0.398
7.0
8.2 | | AD | A A B | m³/s side | 7.0
0.155 0.111
4.9 3.4 | 7.9
0.207 0.147
5.8 4.0 | 9.2
0.258 0.184
6.7 4.6 | 9.8
0.310 0.221
7.0 4.9 | 10.4
0.362 0.258
7.6 5.2 | 11.3
0.414 0.295
8.2 5.5 | 11.9
0.465 0.331
8.8 6.1 | | 0.169
m ² | 52 54
55 53 | throw m | 6.1 4.3
8.5 5.8
0.265 | 7.0 4.9
9.8 6.7
0.354 | 7.9 5.5
11.3 7.6
0.442 | 8.5 6.1
11.9 8.2
0.531 | 9.2 6.4
12.8 8.8
0.619 | 10.1 7.0
13.7 9.5
0.708 | 10.7 7.3
14.6 10.1
0.796 | | | 12, 13 | m³/s side
throw m | 0.265
4.6
5.5
7.9 | 5.2
6.4
9.2 | 5.8
7.3
10.4 | 0.531
6.4
7.9
11.3 | 6.7
8.5
12.2 | 7.3
9.2
12.8 | 7.9
9.8
13.7 | | | Return NC+6 | Total m³/s
NC | 0.309
9 | 0.413
18 | 0.515
25 | 0.619
31 | 0.723 | 0.826
39 | 0.930
43 | | 275 | Factors -SP=2.2 TP | m³/s side | A B 0.099 0.055 3.7 2.1 | A B 0.133 0.074 4.3 2.4 | A B 0.166 0.092 4.9 2.7 | A B 0.199 0.111 5.2 3.1 | A B 0.233 0.129 5.5 3.4 | A B
0.266 0.147
6.1 3.4 | A B 0.299 0.166 6.4 3.7 | | 375
X
525 | B 42 | throw m | 3.7 2.1
4.6 2.7
6.4 3.7
0.077 0.077 | 4.3 2.4
5.2 3.1
7.3 4.3
0.103 0.103 | 5.8 3.4
8.2 4.9
0.129 0.129 | 6.4 3.7
9.2 5.2
0.154 0.154 | 5.5 3.4
6.7 4.0
9.8 5.5
0.180 0.180 | 7.3 4.3
10.4 6.1
0.206 0.206 | 7.9 4.6
11.0 6.4
0.232 0.232 | | | 45 * | m³/s side
throw m | 3.4 3.4
4.3 4.3
5.8 5.8 | 4.0 4.0
4.9 4.9
6.7 6.7 | 4.6 4.6
5.5 5.5
7.6 7.6 | 0.154 0.154
4.9 4.9
6.1 6.1
8.2 8.2 | 5.2 5.2
6.4 6.4
8.8
8.8 | 5.5 5.5
7.0 7.0
9.5 9.5 | 0.232 0.232
6.1 6.1
7.3 7.3
10.1 10.1 | | | A A | m³/s side
throw m | 0.127 0.055
3.7 2.1 | 0.170 0.074
4.3 2.4 | 0.212 0.092
4.9 2.7 | 0.254 0.111
5.2 3.1 | 0.297 0.129
5.5 3.4 | 0.339 0.147
6.1 3.4 | 0.382 0.166
6.4 3.7 | | | 31 | m ³ /s side | 4.6 2.7
6.4 3.7
0.101 0.109 | 5.2 3.1
7.3 4.3
0.134 0.144 | 5.8 3.4
8.2 4.9
0.168 0.180 | 6.4 3.7
9.2 5.2
0.201 0.217 | 6.7 4.0
9.8 5.5
0.235 0.253 | 7.3 4.3
10.4 6.1
0.269 0.289 | 7.9 4.6
11.0 6.4
0.303 0.325 | | | 33 B | throw m | 3.1 2.7
3.7 3.4
5.2 4.9 | 3.7 3.1
4.3 4.0
6.1 5.5 | 4.3 3.4
4.9 4.6
7.0 6.4 | 4.6 3.7
5.2 4.9
7.6 6.7 | 4.9 4.0
5.5 5.2
7.9 7.3 | 5.2 4.3
6.1 5.5
8.5 7.6 | 5.5 4.6
6.4 6.1
9.2 8.2 | | | ♣ 37 | m³/s side
throw m | 0.100 0.105
3.7 3.7
4.6 4.6 | 0.133 0.140
4.3 4.3
5.2 5.2 | 0.166 0.175
4.9 4.9
5.8 5.8 | 0.199 0.210
5.2 5.2
6.4 6.4 | 0.232 0.245
5.5 5.5
6.7 6.7 | 0.266 0.280
6.1 6.1
7.3 7.3 | 0.299 0.315
6.4 6.4
7.9 7.9 | | | A | m³/s side
throw m | 6.4 6.4
0.154
4.0 | 7.3 7.3
0.206
4.6 | 8.2 8.2
0.258
5.2 | 9.2 9.2
0.310
5.5 | 9.8 9.8
0.362
6.1 | 10.4 10.4
0.413
6.4 | 11.0 11.0
0.465
7.0 | | AD | 22, 23 | m³/s side | 4.9
7.0
0.199 0.111 | 5.5
7.9
0.266 0.147 | 6.4
9.2
0.331 0.184 | 6.7
9.8
0.398 0.221 | 7.3
10.4
0.465 0.258 | 7.6
11.3
0.532 0.295 | 8.2
11.9
0.599 0.331 | | 0.197
m ² | 52 55 54
55 53 | throw m | 4.3 3.4
5.2 4.3
7.3 5.8 | 4.9 4.0
6.1 4.9
8.5 6.7 | 5.5 4.6
7.0 5.5
9.8 7.6 | 6.1 4.9
7.6 6.1
10.4 8.2 | 6.4 5.2
7.9 6.4
11.3 8.8 | 7.0 5.5
8.5 7.0
12.2 9.5 | 7.3 6.1
9.2 7.3
12.8 10.1 | | | 12, 13 | m³/s side
throw m | 0.309
4.9
6.1 | 0.413
5.8
7.0 | 0.515
6.7
7.9 | 0.619
7.0
8.5 | 0.723
7.6
9.2 | 0.826
8.2
10.1 | 0.930
8.8
10.7 | | | Return NC+7 | Total m³/s
NC | 0.354
10 | 9.8
0.472
19 | 11.3
0.590
26 | 11.9
0.708
32 | 12.8
0.826
36 | 13.7
0.944
40 | 14.6
1.060
44 | | | Factors -SP=2.7 TP | m³/s side | A B 0.122 0.055 | A B 0.162 0.074 | A B 0.203 0.092 | A B 0.244 0.111 | A B 0.284 0.129 | A B 0.325 0.147 | A B
0.365 0.166 | | 375
X
600 | B 42 | throw m | 3.7 2.1
4.6 2.7
6.4 3.7 | 4.3 2.4
5.2 3.1
7.3 4.3 | 4.9 2.7
5.8 3.4
8.2 4.9 | 5.2 3.1
6.4 3.7
9.2 5.2 | 5.5 3.4
6.9 4.0
9.8 5.5 | 6.1 3.4
7.3 4.3
10.4 6.1 | 6.4 3.7
7.9 4.6
11.0 6.4 | | | ▲ B 45 * | m³/s side
throw m | 0.077 0.100
3.4 3.7
4.3 4.6 | 0.103 | 0.129 0.166
4.6 4.9
5.5 5.8 | 0.154 0.199
4.9 5.2
6.1 6.4 | 0.180 0.232
52.0 5.5
6.4 6.7 | 0.206 0.266
5.5 6.1
7.0 7.3 | 0.232 0.299
6.1 6.4
7.3 7.9 | | | A | m³/s side
throw m | 5.8 6.4
0.149 0.055
4.0 2.1 | 6.7 7.3
0.199 0.074
4.6 2.4 | 7.6 8.2
0.249 0.092
5.2 2.7 | 8.2 9.2
0.299 0.111
5.5 3.1 | 8.8 9.8
0.348 0.129
6.1 3.4 | 9.5 10.4
0.398 0.147
6.4 3.4 | 10.1 11.0
0.448 0.166
7.0 3.7 | | | 31 | m³/s side | 4.9 2.7
7.0 3.7
0.100 0.142 | 5.5 3.1
7.9 4.3
0.142 0.189 | 6.4 3.4
9.2 4.9
0.177 0.236 | 6.7 3.7
9.8 5.2
0.212 0.283 | 7.3 4.0
10.4 5.5
0.248 0.330 | 7.6 4.3
11.3 6.1
0.283 0.378 | 8.2 4.6
11.9 6.4
0.319 0.425 | | | A 33 | throw m | 3.7 3.0
4.6 3.7
6.4 .5.2 | 4.3 3.7
5.2 4.3
7.3 6.1 | 4.9 4.3
5.8 4.9
8.2 7.0 | 5.2 4.6
6.4 5.2
9.2 7.6 | 5.5 4.9
6.7 5.5
9.8 7.9 | 6.1 5.2
7.3 6.1
10.4 8.5 | 6.4 5.5
7.9 6.4
11.0 9.2 | | | B 37 | m³/s side
throw m | 0.122 | 0.162 0.155
4.3 4.3
5.2 5.2 | 0.203 0.194
4.9 4.9
5.8 5.8 | 0.244 0.232
5.2 5.2
6.4 6.4 | 0.284 0.271
5.5 5.5
6.7 6.7 | 0.325 0.310
6.1 6.1
7.3 7.3 | 0.366 0.348
6.4 6.4
7.9 7.9 | | | • | m³/s side
throw m | 6.4 6.4
0.177
4.3 | 7.3 7.3
0.236
4.9 | 8.2 8.2
0.295
5.5 | 9.2 9.2
0.354
6.1 | 9.8 9.8
0.413
6.4 | 10.4 10.4
0.472
7.0 | 11.0 11.0
0.531
7.3 | | AD | A 22, 23 | m ³ /s side | 5.2
7.3
0.244 0.111 | 6.1
8.5
0.325 0.147 | 7.0
9.8
0.406 0.184 | 7.6
10.4
0.405 0.221 | 7.9
11.3
0.568 0.258 | 8.5
12.2
0.650 0.295 | 9.2
12.8
0.731 0.331 | | AD
0.225
m ² | 52 54
55 53 | throw m | 4.6 3.4
5.5 4.3
7.9 5.8 | 5.2 4.0
6.4 4.9
9.2 6.7 | 5.8 4.6
7.3 5.5
10.4 7.6 | 6.4 4.9
7.9 6.1
11.3 8.2 | 6.7 5.2
8.5 6.4
12.2 8.8 | 7.3 5.5
9.2 7.0
12.8 9.5 | 7.9 6.1
9.8 7.3
13.7 10.1 | | | 12, 13 | m³/s side
throw m | 0.354
5.2
6.4 | 0.472
6.1
7.3 | 0.590
7.0
8.2 | 0.708
7.6
9.2 | 0.826
7.9
9.8 | 0.944
8.5
10.4 | 1.060
9.2
11.0 | | | | | 9.2 | 10.4 | 11.9 | 12.8 | 13.7 | 14.6 | 15.6 | ^{*} These cores are constructed to give as near as possible equal air flow in A & B directions. | Size | Patterns | Neck Vel m/s | 1.57 | 2.10 | 2.62 | 3.15 | 3.67 | 4.19 | 4.72 | |-------------------------------|---------------------------------------|---|--|--|--|---|---|--|--| | in mm | Return NC+6 | TP Pa Total m³/s | 0.372 | 0.496 | 17
0.618 | 0.743 | 0.869 | 0.991 | 1.110 | | | Factors -SP=2.3 TP | NC | 9
A B
0.106 0.080 | 19
A B
0.142 0.106 | 26
A B
0.177 0.132 | 32
A B
0.212 0.159 | 36
A B
0.248 0.186 | 40
A B
0.283 0.212 | A B
0.318 0.239 | | 450
x
525 | A 43 | m³/s side
throw m | 3.1 2.4
3.7 3.1
5.2 4.3
0.146 0.080 | 3.7 2.7
4.3 3.4
6.1 4.9
0.195 0.106 | 4.3 3.1
4.9 4
7 5.5
0.243 0.133 | 4.6 3.4
5.2 4.3
7.6 6.1
0.292 0.159 | 4.9 3.7
5.5 4.6
7.9 6.4
0.341 0.186 | 5.2 4
6.1 4.9
8.5 7
0.389 0.212 | 5.5 4.3
6.4 5.2
9.2 7.3
0.438 0.239 | | | A 31 | m³/s side
throw m | 4.0 2.4
4.9 3.1
7.0 4.3
0.132 0.109 | 4.6 2.7
5.5 3.4
7.9 4.9
0.176 0.144 | 5.2 3.1
6.4 4.0
9.2 5.5
0.219 0.180 | 5.5 3.4
6.7 4.3
9.8 6.1
0.263 0.217 | 6.1 3.7
7.3 4.6
10.4 6.4
0.308 0.253 | 6.4 4.0
7.6 4.9
11.3 7.0
0.351 0.289 | 7.0 4.9
8.2 5.2
11.9 7.3
0.395 0.325 | | | A 33 | m³/s side
throw m | 4.0 2.7
4.9 3.4
7.0 4.9
0.133 0.119 | 4.6 3.1
5.5 4.0
7.9 5.5
0.177 0.159 | 5.2 3.4
6.4 4.6
9.2 6.4
0.221 0.198 | 5.5 3.7
6.7 4.9
9.8 6.7
0.266 0.238 | 6.1 4.0
7.3 5.2
10.4 7.3
0.310 0.278 | 6.4 4.3
7.6 5.5
11.3 7.6
0.354 0.317 | 7.0 4.6
8.2 6.1
11.9 8.2
0.399 0.357 | | | B 37 | m³/s side
throw m
m³/s side | 4.0 3.7
4.9 4.6
7.0 6.4 | 4.6 4.3
5.5 5.2
7.9 7.3
0.248 | 5.2 4.9
6.4 5.8
9.2 8.2
0.309 | 5.5 5.2
6.7 6.4
9.8 9.2
0.372 | 6.1 5.5
7.3 6.7
10.4 9.8
0.434 | 6.4 6.1
7.6 7.3
11.3 10.4
0.496 | 7.0 6.4
8.2 7.9
11.9 11.0 | | AD | A 22, 23 | throw m | 4.3
5.2
7.3 | 4.9
6.1
8.5
0.283 0.212 | 5.5
7.0
9.8
0.359 0.264 | 6.1
7.6
10.4
0.425 0.319 | 6.4
7.9
11.3
0.496 0.373 | 7.0
8.5
12.2
0.566 0.425 | 7.3
9.1
12.8
0.637 0.477 | | 0.236
m² | 52 55 54 54 53 | m ³ /s side
throw m
m ³ /s side | 4.3 3.7
5.2 4.6
7.3 6.4 | 4.9 4.3
6.1 5.2
8.5 7.3
0.496 | 5.5 4.9
7.0 5.8
9.8 8.2
0.618 | 6.1 5.2
7.6 6.4
10.4 9.2
0.743 | 6.4 5.5
7.9 6.7
11.3 9.8
0.869 | 7.0 6.1
8.5 7.3
12.2 10.4 | 7.3 6.4
9.1 7.9
12.8 11.0 | | | Return NC+7 | throw m | 5.2
6.4
9.2
0.425 | 6.1
7.3
10.4 | 7.0
8.2
11.9 | 7.6
9.2
12.8 | 7.9
9.8
13.7 | 8.5
10.4
14.6 | 9.2
11.0
15.6 | | | Return NC+7 Factors -SP=2.6 TP | NC
m³/s side | 11 A B 0.133 0.080 | 20
A B
0.177 0.106 | 27
A B
0.221 0.133 | 33
A B
0.266 0.159 | 37
A B
0.310 0.186 | A B 0.354 0.212 | 45
A B
0.398 0.239 | | 450
x
600 | A 43 | throw m | 4.0 2.4
4.9 3.1
7.0 4.3
0.106 0.106 | 4.6 2.7
5.5 3.4
7.9 4.9
0.142 0.142 | 5.2 3.1
6.4 4.0
9.2 5.5
0.177 0.177 | 5.5 3.4
6.7 4.3
9.8 6.1
0.212 0.212 | 6.1 3.7
7.3 4.6
10.4 6.4
0.248 0.248 | 6.4 4.0
7.6 4.9
11.3 7.0
0.283 0.283 | 7.0 4.3
8.2 5.2
11.9 7.3
0.319 0.319 | | | ■ 45 * | throw m
m³/s side | 3.7 3.7
4.6 4.6
6.4 6.4
0.173 0.080 | 4.3 4.3
5.2 5.2
7.3 7.3
0.230 0.106 | 4.9 4.9
5.8 5.8
8.2 8.2
0.288 0.133 | 5.2 5.2
6.4 6.4
9.2 9.2
0.345 0.159 | 5.5 5.5
6.7 6.7
9.8 9.8
0.403 0.186 | 6.1 6.1
7.3 7.3
10.4 10.4
0.460 0.212 | 6.4 6.4
7.9 7.9
11.0 11.0
0.518 0.239 | | | 31 | throw m
m³/s side | 4.3 2.4
5.2 3.1
7.3 4.3
0.142 0.142 | 4.9 2.7
6.1 3.4
8.5 4.9
0.189 0.189 | 5.5 3.1
7.0 4.0
9.8 5.5
0.236 0.236 | 6.1 3.4
7.6 4.3
10.4 6.1
0.283 0.283 | 6.4 3.7
7.9 5.2
11.3 6.4
0.330 0.330 | 7.0 4.0
8.5 4.9
12.2 7.0
0.378 0.378 | 7.3 4.3
9.2 5.2
12.8 7.3
0.425 0.425 | | | △ A B B B 33 | throw m
m³/s side | 4.0 3.1
4.9 3.7
7.0 5.2
0.133 0.146 | 4.6 3.7
5.5 4.3
7.9 6.1
0.177 0.195 | 5.2 4.3
6.4 4.9
9.2 7.0
0.221 0.243 | 5.5 4.6
6.7 5.2
9.8 7.6
0.266 0.292 | 6.1 4.9
7.3 5.5
10.4 7.9
0.310 0.340 | 6.4 5.2
7.6 6.1
11.3 8.5
0.354 0.389 | 7.0 5.5
8.2 6.4
11.9 9.2
0.399 0.438 | | | 37 | throw m
m³/s side | 4.0 4.0
4.9 4.9
7.0 7.0
0.212 | 4.6 4.6
5.5 5.5
7.9 7.9
0.283 | 5.2 5.2
6.4 6.4
9.2 9.2
0.354 | 5.5
5.5
6.7 6.7
9.8 9.8
0.425 | 6.1 6.1
7.3 7.3
10.4 10.4
0.496 | 6.4 6.4
7.6 7.6
11.3 11.3
0.566 | 7.0 7.0
8.2 8.2
11.9 11.9
0.637 | | AD | A 22, 23 | throw m
m³/s side | 4.3
5.2
7.3
0.265 0.160 | 4.9
6.1
8.5
0.354 0.212 | 5.5
7.0
9.8
0.443 0.265 | 6.1
7.6
10.4
0.531 0.319 | 6.4
7.9
11.3
0.620 0.372 | 7.0
8.5
12.2
0.708 0.425 | 7.3
9.2
12.8
0.797 0.478 | | AD
0.27
m ² | 52
55
55
54
53 | throw m
m³/s side | 4.6 3.7
5.5 5.2
7.9 6.4
0.425 | 5.2 4.3
6.4 5.5
9.2 7.3
0.566 | 5.8 4.9
7.3 5.8
10.4 8.2
0.708 | 6.4 5.2
7.9 6.4
11.3 9.2
0.850 | 6.7 5.5
8.5 6.7
12.2 9.8
0.991 | 7.3 6.1
9.2 7.2
12.8 10.4
1.133 | 7.9 6.4
9.8 7.9
13.7 11.1
1.270 | | | 12, 13 | throw m | 5.5
7.0
9.5 | 6.4
7.9
11.0 | 7.3
9.2
12.5 | 7.6
9.8
13.4 | 8.5
10.4
14.6 | 9.2
11.3
15.6 | 9.8
11.9
16.5 | | | Return NC+8
Factors -SP=3.2 TP | Total m³/s
NC | 0.496
12
A B | 0.661
21
A B | 0.826
28
A B | 0.991
34
A B | 1.156
38
A B | 1.322
42
A B | 1.490
46
A B | | 525
x
600 | A A A A A A A A A A A A A A A A A A A | m³/s side
throw m | 0.139 0.109
3.4 2.7
4.3 3.4
5.8 4.9 | 0.186 0.144
4.0 3.1
4.9 4.0
6.7 5.5 | 0.233 0.180
4.6 3.4
5.5 4.6
7.6 6.4 | 0.279 0.217
4.9 3.7
6.1 4.9
8.2 6.7 | 0.326 0.253
5.2 4.0
6.4 5.2
8.8 7.3 | 0.372 0.289
5.5 4.3
7.0 5.5
9.5 7.6 | 0.419 0.325
6.1 4.6
7.3 6.1
10.1 8.2 | | | A 31 | m³/s side
throw m | 0.194 | 0.258 | 0.323 | 0.387 0.217
6.1 3.7
7.6 4.9
10.4 6.7 | 0.452 0.253
6.4 4.0
7.9 5.2
11.3 7.3 | 0.517 0.289
7.0 4.3
8.5 5.5
12.2 7.6 | 0.581 0.325
7.3 4.6
9.2 6.1
12.8 8.2 | | | A 33 | m³/s side
throw m | 0.177 | 0.236 0.189
4.9 3.7
6.1 4.3
8.5 6.1 | 0.295 0.236
5.5 4.3
7.0 4.9
9.8 7.0 | 0.354 | 0.414 0.331
6.4 4.9
7.9 5.5
11.3 7.9 | 0.471 0.377
7.0 5.2
8.5 6.1
12.2 8.5 | 0.532 | | | B 37 | m³/s side
throw m | 0.170 | 0.227 0.217
4.3 4.3
5.2 5.2
7.3 7.3 | 0.283 0.271
4.9 4.9
5.8 5.8
8.2 8.2 | 0.340 0.326
5.2 5.2
6.4 6.4
9.2 9.2 | 0.397 0.380
5.5 5.5
6.7 6.7
9.8 9.8 | 0.453 | 0.510 0.486
6.4 6.4
7.9 7.9
11.0 11.0 | | AD | A 22, 23 | m³/s side
throw m | 0.248
4.6
5.5
7.9
0.279 0.217 | 0.330
5.2
6.4
9.2
0.372 0.289 | 0.413
5.8
7.3
10.4
0.465 0.361 | 0.496
6.4
7.9
11.3 | 0.578
6.7
8.5
12.2
0.652 0.505 | 0.661
7.3
9.2
12.8
0.744 0.578 | 0.744
7.9
9.8
13.7
0.838 0.650 | | AD
0.315
m ² | 52 54
55 55 54 | m ³ /s side
throw m
m ³ /s side | 4.9 4.0
6.1 4.9
8.5 7.0 | 5.8 4.6
7.0 5.5
9.8 7.9
0.661 | 6.7 5.2
7.9 6.4
11.3 9.2
0.826 | 7.0 5.5
8.5 6.7
11.9 9.8 | 7.6 6.1
9.2 7.3
12.8 10.4
1.160 | 8.2 6.4
10.1 7.6
13.7 11.3 | 8.8 7.0
10.7 8.2
14.6 11.9 | | | 12, 13 | throw m | 5.8
7.3
10.1 | 6.7
8.2
11.6 | 7.6
9.5
13.1 | 8.2
10.1
14.3 | 8.8
11.0
15.3 | 9.5
11.6
16.5 | 10.1
12.5
17.4 | $^{{}^{*}}$ These cores are constructed to give as near as possible equal air flow in A & B directions.