CMPH – Ceiling Multi Pattern - Horizontal ### Model: CMPH - Ceiling Multi Pattern - Horizontal The CMPH series of diffusers was developed to increase the acceptable application range of multi-pattern type ceiling outlets, for the reduced volumetric flow levels typically associated with VAV systems. It is a variation on the basic CMP series with a horizontal blade added to each blade, which increases the induction rate, resulting in rapid mixing of supply and room air, which produces a strong ceiling effect at lower flows, minimising dumping. These diffusers are also ideal for lower than normal ceiling heights, or low fixed volume air flows such as those usually found in centre zones. In general, they operate at higher pressure, noise level, and throw distance than the equivalent Model CMP at the same flow. #### Construction CMPH series diffusers are ruggedly constructed entirely of aluminium, are lightweight and have no heavy cast, or moulded components. Precision combination corner gussets and braces, keep mitres to a hairline and aluminium rivets hold the core components rigidly together, eliminating the possibility of warping, flexing, or rattling. Panel diffusers (Type 2 on page 159D) are mechanically secured to steel panels with the unique Holyoake mounting pins, eliminating gaps and producing a super-fine junction between panel and extrusion. #### Installation The diffusers frame assembly is installed in the ceiling opening and attached and sealed to the supply duct. The extensive range of cores, all snap in to the frame surrounds, with nickel plated spring steel thumb clips. #### **Finish** All Holyoake aluminium diffusers receive a three stage preparation, prior to final finishing; cleaning, chemical etch and drying. This preparation ensures powder coat adhesion and precludes powder peeling, or flaking after installation. Standard colour is Holyoake White. #### **Features** - All aluminium lightweight construction. - · Precision mitred corners. - · Selection of frame styles. - Variety of throw patterns. - Snap-in interchangeable cores. - Tough powder coat finish. - Lightweight Premi-Aire and galvanised cushion head boxes available. Due to a policy of continuous development and improvement the right is reserved to supply products which may differ slightly from those illustrated and described in this publication. ### Ceiling Multi Pattern - Horizontal - CMPH ### Model: CMPH — Ceiling Multi Pattern Diffuser - Horizontal ### Standard Flange Frame. Designed for surface mounting on all types of ceilings, as well as lay-in ceiling tile applications. #### Panel Diffuser. Lay-in type for installation in suspended "T-Rail" type ceilings. Standard panel overall size is 595×595 to suit a 600×600 grid. Size 450×450 has an overall face size of 595×595 . It therefore does not require a panel in a 600 grid and fits "T-Rail" spacing with clearance*. #### **Drop Frame.** Lowers the face of the diffuser below the ceiling line. Can be used to reduce smudging, or against obstacles to minimise drafts. Can be supplied in any height from 50-81mm, but unless otherwise specified, frame height of 50 mm will be furnished. Special order only. #### **Bevelled Drop Frame.** Smartly styled bevelled type surround reduces ceiling smudging. For all surface mounting applications. Special order only. #### Construction #### **Aluminium:** 0.75mm extruded 6063-T5 aluminium outer frame. 0.55mm removable aluminium core. Note: 0.75 mm Steel Panel on CMPH Type 2. Product weights are shown on page 161D. Type 2 Type 1 Type 3 Type 4 ## **CMPH** – Performance Data | Size in mm | Patterns | Neck Vel m/s
TP Pa | 1.04 | 1.57
10 | 2.10
16 | 2.62
24 | 3.15
35 | 3.67
48 | |-------------------------------|-----------------------------------|--|---|---|---|---|--|---| | | Return NC+1
Factors -SP=1.1 TP | Static Pa Total m³/s NC | 0.024
-
A B | 0.036
-
A B | 0.047
-
A B | 0.059
-
A B | 0.071
23
A B | 0.083
28
A B | | 150
x
150 | √ 41 | m³/s side
0.75
throw m 0.50
0.25 | 0.006
0.5
0.6
0.9 | 0.008
0.9
1.2
2.7 | 0.012
1.8
2.4
5.8 | 0.015
2.7
3.7
6.4 | 0.017
3.2
4.3
7 | 0.021
3.4
4.6
7.3 | | | A 36* | m ³ /s side
0.75
throw m 0.50
0.25 | 0.005 0.009
0.5 0.7
0.6 0.9
0.9 1.5 | 0.007 0.014
0.7 1.4
0.9 1.8
2.4 3.7 | 0.009 0.019
1.4 2.3
1.8 3.0
3.4 6.1 | 0.012 0.024
2.5 3.0
3.4 4.0
6.1 7.0 | 0.014 0.028
3.0 3.9
4.0 5.2
6.7 7.9 | 0.017 0.033
3.4 4.6
4.6 6.1
7.3 8.8 | | AD
0.023
m ² | 21 51 | m³/s side
0.75
throw m 0.50
0.25 | 0.012
0.9
1.2
1.8 | 0.018
1.6
2.1
5.2 | 0.024
2.7
3.7
6.4 | 0.030
3.2
4.3
7.0 | 0.035
4.3
5.8
8.5 | 0.041
4.8
6.4
9.4 | | | □ 11 | m ³ /s side
0.75
throw m 0.50
0.25 | 0.024
0.9
1.2
2.7 | 0.035
2.3
3.0
6.1 | 0.047
3.2
4.3
7.0 | 0.059
4.3
5.8
8.5 | 0.071
5.0
6.7
9.7 | 0.083
5.9
7.9
10.4 | | | Return NC+3
Factors -SP=1.3 TP | Total m³/s
NC | 0.052
-
A B | 0.080
-
A B | 0.106
-
A B | 0.132
23
A B | 0.158
28
A B | 0.184
33
A B | | 225
x
225 | 41 | m ³ /s side
0.75
throw m 0.50
0.25 | 0.013
0.7
0.9
2.1 | 0.020
1.6
2.1
5.5 | 0.026
2.7
3.7
6.4 | 0.033
4.1
5.5
7.9 | 0.040
4.3
5.8
8.5 | 0.046
5.0
6.7
9.7 | | AD | ♣ 36* | m³/s side
0.75
throw m 0.50
0.25 | 0.010 0.021
0.7 0.9
0.9 1.2
1.8 2.7 | 0.016 0.032
1.6 2.3
2.1 3.0
3.7 6.1 | 0.021 0.042
2.5 3.2
3.4 4.3
6.1 7.0 | 0.026 0.053
3.2 4.1
4.3 5.5
7.0 8.2 | 0.032 0.063
3.7 5.0
4.9 6.7
7.6 9.7 | 0.037 0.074
4.8 5.9
6.4 7.9
9.1 11.3 | | AD
0.051
m ² | 21 51 | m³/s side
0.75
throw m 0.50
0.25
m³/s side | 0.026
1.1
1.5
3.0 | 0.040
2.5
3.4
6.1 | 0.053
3.2
4.3
7.0
0.106 | 0.066
4.3
5.8
8.5
0.132 | 0.079
5.5
7.3
10.1
0.158 | 0.092
6.2
8.2
10.7
0.184 | | | □ 11 | 0.75
throw m 0.50
0.25 | 1.6
2.1
5.2 | 3.0
4.0
6.7 | 4.3
5.8
8.5 | 5.5
7.3
10.1 | 6.4
8.5
11.0 | 7.3
9.7
12.8 | | | Return NC+5
Factors -SP=1.4 TP | Total m³/s
NC | 0.094
-
A B | 0.142
-
A B | 0.189
-
A B | 0.236
28
A B | 0.283
33
A B | 0.330
38
A B | | 300
x
300 | 41 | m ³ /s side
0.75
throw m 0.50
0.25 | 0.024
0.9
1.2
2.4 | 0.035
2.3
3.0
6.1 | 0.047
3.0
4.0
7.0 | 0.059
4.3
5.8
8.5 | 0.071
5.3
7.0
10.1 | 0.083
5.9
7.9
10.4 | | AD | Å 36* | m ³ /s side
0.75
throw m 0.50
0.25 | 0.019 0.038
0.9 1.4
1.2 1.8
2.7 3.4
0.047 | 0.028 0.057
1.8 2.7
2.4 3.7
5.8 6.4
0.071 | 0.038 0.076
3.0 3.9
4.0 5.2
5.2 7.9
0.094 | 0.047 0.094
3.9 5.0
5.2 6.7
7.9 9.7
0.118 | 0.057 0.113
5.0 5.9
6.7 7.9
9.7 10.4
0.142 | 0.066 0.132
5.7 6.9
7.6 9.1
10.1 12.2
0.165 | | 0.090
m² | 21 51 | m ³ /s side
0.75
throw m 0.50
0.25 | 1.6
2.1
5.2 | 3.0
4.0
7.0 | 4.1
5.5
8.5 | 5.3
7.0
10.1
0.236 | 6.4
8.5
11.0 | 7.1
9.4
12.5 | | | ▶ 11 | m³/s side
0.75
throw m 0.50
0.25 | 2.3
3.0
6.1 | 3.9
5.2
7.9 | 0.189
5.5
7.3
10.1 | 6.4
8.5
11.6 | 7.3
9.7
12.8 | 8.0
10.7
14.9 | | | Return NC+5
Factors -SP=1.9 TP | Total m³/s
NC | 0.146
-
A B | 0.222
-
A B | 0.295
-
A B | 0.368
28
A B | 0.441
33
A B | 0.514
38
A B | | 375
x
375 | √ ► 41 | m ³ /s side
0.75
throw m 0.50
0.25 | 0.036
1.4
1.8
3.4
0.029 0.059 | 0.055
2.7
3.7
6.4
0.044 0.089 | 0.074
3.9
5.2
7.9
0.059 0.118 | 0.092
5.0
6.7
9.7
0.074 0.147 | 0.110
5.9
7.9
10.4
0.088 0.177 | 0.128
6.6
8.8
11.9
0.103 0.206 | | AD | ♣ 36* | m³/s side
0.75
throw m 0.50
0.25 | 1.1 1.8
1.5 2.4
3.0 5.8 | 2.5 3.2
3.4 4.3
6.1 7.0 | 3.4 4.6
4.6 6.1
7.3 9.1
0.147 | 4.8 5.7
6.4 7.6
9.4 10.1
0.184 | 5.5 6.9
7.3 9.1
10.1 12.2
0.220 | 6.4 7.8
8.5 10.4
11.0 14.3 | | 0.141
m² | 21 51 | m³/s side
0.75
throw m 0.50
0.25
m³/s side | 1.8
2.4
5.8 | 3.4
4.6
7.3 | 5.0
6.7
9.7
0.295 | 5.9
7.9
10.4
0.368 | 7.1
9.4
12.5 | 7.5
10.1
14.3 | | | ■ 11 | 0.75
throw m 0.50
0.25 | 2.7
3.7
6.4 | 4.6
6.1
8.8 | 5.9
7.9
10.4 | 7.1
9.4
12.5 | 8.0
10.7
14.9 | 18.5
11.3
15.5 | | | Return NC+7
Factors -SP=2.2 TP | Total m³/s
NC | 0.212
-
A B | 0.319
-
A B | 0.425
-
A B | 0.531
28
A B | 0.637
33
A B | 0.743
38
A B | | 450
x
450 | √ 41 | m³/s side
0.75
throw m 0.50
0.25 | 0.053
1.6
2.1
4.9 | 0.080
3.2
4.3
7.0 | 0.106
4.3
5.8
8.5 | 0.133
5.5
7.3
10.1 | 0.159
6.4
8.5
11.6 | 0.186
7.5
10.1
13.7 | | 4.5 | Å 36* | m ³ /s side
0.75
throw m 0.25
0.25 | 0.042 0.085
1.6 2.3
2.1 3.0
4.3 6.1 | 0.064 0.127
3.0 3.4
4.0 4.6
6.7 7.3 | 0.085 0.170
4.3 5.0
5.8 6.7
8.5 9.7 | 0.106 0.212
5.0 6.2
6.7 8.2
9.7 11.3 | 0.127 0.255
6.2 7.3
8.2 9.7
10.7 12.8 | 0.149 0.297
7.1 8.0
9.4 10.7
12.5 14.9 | | AD
0.202
m ² | 21 51 | m ³ /s side
0.75
throw m 0.50
0.25 | 0.106
2.5
3.4
6.1 | 0.159
3.9
5.2
7.9 | 0.212
5.5
7.3
10.1 | 0.265
6.6
8.8
11.9 | 0.319
7.5
10.1
13.7 | 0.371
8.2
11.0
15.2 | | | 11 | m³/s side
0.75
throw m 0.50
0.25 | 0.212
3.2
4.3
7.0 | 0.319
5.0
6.7
9.7 | 0.425
6.4
8.5
11.3 | 0.531
7.5
10.1
13.7 | 0.637
8.2
11.0
15.2 | 0.743
8.7
11.6
16.8 | $^{^{\}ast}$ These cores are constructed to give as near as possible equal air flow in A & B directions. ## Performance Data – CMPH | Size | | Patte | rnc | | Neck Vel m/s | | 1.04 | | 1.57 | | 2.10 | | 2.62 | | 3.15 | | 3.67 | | |----------------|-------------------|--------|------------|------|-------------------------|--------------|--------------|------------|---------------|------------|---------------|-------------|---------------|-------------|---------------|--------------|---------------|--------------| | in mm | | ratte | IIIS | | TP Pa | | 4 | | 10 | | 16 | | 24 | | 35 | | 48 | | | | | | | | Static Pa | | 3 | | 8 | | 13 | | 20 | | 30 | | 40 | | | | Return | NC+9 | | | Total m³/s
NC | | 0.288 | | 0.434 | | 0.578
28 | | 0.722
33 | | 0.866
38 | | 1.010
43 | | | | Factors | -SP=2 | 2.7 11 | | | | Δ | В | A | В | Δ | В | A | В | Δ | В | A | В | | | | | _ | | m³/s side | | 0.072 | | 0.109 | | 0.144 | | 0.180 | | 0.217 | | 0.252 | | | 525 | | • | | 41 | | 0.75
0.50 | 1.8
2.4 | | 3.4
4.6 | | 5
6.7 | | 5.9
7.9 | | 7.1
9.4 | | 8
10.7 | | | x
525 | | | | | throw m | 0.50 | 5.8 | | 7.3 | | 9.7 | | 10.4 | | 12.5 | | 14.9 | | | | | | À | | m³/s side | | 0.058 | 0.115 | 0.087 | 0.174 | 0.116 | 0.231 | 0.144 | 0.289 | 0.173 | 0.346 | 0.202 | 0.404 | | | | | ■ A | 36* | | | 1.8 | 2.7
3.7 | 3.2 | 4.1 | 4.6 | 5.7 | 5.5
7.3 | 6.9
9.1 | 6.4 | 7.5 | 7.5 | 8.2 | | | | | | 30 . | throw m | 0.50
0.25 | 2.4
5.8 | 6.4 | 4.3
7.0 | 5.5
8.2 | 6.1
8.8 | 7.6
10.1 | 7.3
10.1 | 12.2 | 8.5
11.3 | 10.1
13.7 | 10.1
13.4 | 11.0
15.5 | | AD | | | ▼ B | | m³/s side | | 0.144 | | 0.217 | | 0.289 | | 0.361 | | 0.433 | | 0.505 | | | 0.276 | | 24 | | F4 | | 0.75 | 2.7 | | 4.3 | | 5.9
7.9 | | 7.1
9.4 | | 7.8 | | 8.5 | | | m² | | 21 | | 51 | throw m | 0.50
0.25 | 3.7
6.4 | | 5.8
8.5 | | 10.4 | | 9.4
12.5 | | 10.4
14.6 | | 11.3
15.8 | 1 | | | • | | | | m³/s side | | 0.288 | | 0.434 | | 0.578 | | 0.722 | | 0.866 | | 1.010 | | | | | | | 11 | | 0.75 | 3.4 | | 5.5 | | 7.1 | | 8.0 | | 8.7 | | 9.1 | | | | | | | | throw m | 0.50
0.25 | 4.6
7.3 | | 7.3
10.1 | | 9.4
12.5 | | 10.7
14.9 | | 11.6
16.2 | | 12.2
17.4 | | | | Return | NC+9 | | | Total m³/s | | 0.378 | | 0.566 | | 0.755 | | 0.944 | | 1.133 | | 1.321 | | | | Factors | | 2.83 TP | | NC | | - | | - | | 28 | | 33 | | 38 | | 43 | | | | | | <u> </u> | | m³/s side | | 0.094 | В | 0.142 | В | 0.189 | В | 0.236 | В | 0.283 | В | 0.330 | В | | 600 | | | | 41 | 111 / 3 3140 | | 2.5 | | 3.9 | | 5.5 | | 6.4 | | 7.5 | | 8.2 | | | X
600 | | | | 41 | throw m | 0.50 | 3.4 | | 5.2
7.9 | | 7.3 | | 8.5 | | 10.1 | | 11.0 | | | 600 | | | Y | | m³/s side | 0.25 | 6.1
0.076 | 0.151 | 0.113 | 0.227 | 10.1
0.151 | 0.302 | 11.3
0.189 | 0.378 | 13.7
0.227 | 0.453 | 15.5
0.264 | 0.529 | | | | | ≜ A | | III / S SIGE | | 1.8 | 3.0 | 3.4 | 4.6 | 5.0 | 5.9 | 5.9 | 7.3 | 7.1 | 8.0 | 7.8 | 8.5 | | | | | | 36* | throw m | 0.50 | 2.4
6.1 | 4.0
6.7 | 4.6
7.3 | 6.1
9.1 | 6.7
9.7 | 7.9
10.4 | 7.9
10.4 | 9.7
12.8 | 9.4
12.5 | 10.7
14.9 | 10.4
14.3 | 11.3
15.8 | | AD | | | ▼B | | m³/s side | 0.25 | 0.188 | b.r | 0.283 | 9.1 | 9.r
0.378 | 10.4 | 0.472 | 12.0 | 0.566 | 14.9 | 0.661 | 15.0 | | 0.36 | | | | | 111 / 3 3140 | | 3.0 | | 5.0 | | 6.6 | | 7.5 | | 8.2 | | 8.7 | | | m ² | | 21 | | 51 | throw m | 0.50 | 4.0
6.7 | | 6.7
9.7 | | 8.8
11.3 | | 10.1
13.7 | | 11.0
17.4 | | 11.6 | | | | _ | | и | | m³/s side | 0.25 | 0.378 | | 9.r
0.566 | | 0.755 | | 0.944 | | 1.133 | | 16.8
1.321 | | | | | | | 4.4 | / 5 5 14 5 | | 3.9 | | 5.9 | | 7.3 | | 8.7 | | 8.9 | | 9.6 | | | | | | | 11 | throw m | 0.50 | 5.2
7.9 | | 7.9
10.4 | | 9.7
13.1 | | 11.6
15.8 | | 11.9
17.1 | | 12.8
18.0 | | | | Return | NC+9 | | | Total m ³ /s | 0.25 | 0.477 | | 0.717 | | 0.956 | | 1.194 | | 1.432 | | 1.671 | | | | Factors | | 3.3 TP | | NC | | | | | | 28 | | 33 | | 38 | | 43 | | | | | | | | m³/s aida | | 0.119 | В | A
0.179 | В | A
0.239 | В | A
0.298 | В | 0.358 | В | A
0.418 | В | | 675 | | | | 4.4 | m³/s side | 0.75 | 2.7 | | 4.6 | | 5.7 | | 6.9 | | 7.8 | | 8.5 | | | X | | • | | 41 | throw m | 0.50 | 3.7 | | 6.1 | | 7.6 | | 9.1 | | 10.4 | | 11.3 | | | 675 | | | | | m³/s side | 0.25 | 6.4
0.095 | 0.191 | 9.1
0.143 | 0.287 | 10.4
0.191 | 0.382 | 12.2
0.239 | 0.478 | 14.6
0.286 | 0.573 | 15.8
0.334 | 0.668 | | | | | <u>Α</u> Δ | | ni /s side | | 2.3 | 3.0 | 3.9 | 5.0 | 5.5 | 6.4 | 6.4 | 7.5 | 7.5 | 8.5 | 8.0 | 8.7 | | | | | | 36* | throw m | 0.50 | 3.0 | 4.0 | 5.2 | 6.7 | 7.3 | 8.5 | 8.5 | 10.1 | 10.1 | 11.3 | 10.7 | 11.6 | | AD | | | ₹ | | m³/s side | 0.25 | 6.4
0.238 | 7.0 | 7.9
0.359 | 9.7 | 10.1
0.478 | 11.6 | 11.3
0.597 | 13.7 | 13.7
0.716 | 15.5 | 14.9
0.835 | 16.2 | | 0.456 | | | _ | | mi /s side | | 3.2 | | 5.5 | | 7.3 | | 7.8 | | 8.7 | | 8.9 | | | m ² | | 21 | | 51 | throw m | 0.50 | 4.3 | | 7.3 | | 9.7 | | 10.4 | | 11.6 | | 11.9 | | | | | | | | m³/s side | 0.25 | 7.0
0.477 | | 10.1
0.717 | | 12.2
0.956 | | 14.6
1.194 | | 16.2
1.432 | | 17.4
1.671 | | | | | | | 4.4 | III / S Side | | 4.3 | | 6.4 | | 7.5 | | 8.9 | | 9.1 | | 10.1 | | | | | | | 11 | throw m | 0.50 | 5.8 | | 8.5 | | 10.1 | | 11.9 | | 12.2 | | 13.4 | | | 825 | Poturn | NC -0 | | | Total m³/s | 0.25 | 8.5
0.713 | | 11.3
1.071 | | 14.3
1.428 | | 16.5
1.784 | | 17.4
2.140 | | 18.6
2.497 | | | X | Return
Factors | NC+9 | 3.5 TP | | NC NC | | - | | 23 | | 28 | | 33 | | 38 | | 43 | | | 825 | 1 40(015 | - 31 - | A | | m ³ /a aida | | A
0.178 | В | A
0.268 | В | A
0.357 | В | A
0.446 | В | A
0.535 | В | A
0.624 | В | | AD | | | | 41 | m³/s side | | 3.0 | | 4.8 | | 6.6 | | 7.5 | | 8.0 | | 8.7 | | | 0.681 | | | | 41 | throw m | 0.50 | 4.0 | | 6.4 | | 8.8 | | 10.1 | | 10.7 | | 11.6 | | | m ² | | | | | | 0.25 | 7.0 | | 9.7 | | 11.3 | | 13.1 | | 14.9 | | 16.2 | | $^{^{\}ast}$ These cores are constructed to give as near as possible equal air flow in A & B directions. | Guide Product Weights | | | | | | | | | | |---------------------------|---------|---------|--|--|--|--|--|--|--| | Approximate Weight in Kg. | | | | | | | | | | | Size | CMPH141 | CMPH241 | | | | | | | | | 150 x 150 | 0.53 | 2.77 | | | | | | | | | 225 x 225 | 0.91 | 2.84 | | | | | | | | | 300 x 300 | 1.33 | 2.89 | | | | | | | | | 375 x 375 | 1.79 | 2.94 | | | | | | | | | 450 x 450 | 2.35 | 3.05 | | | | | | | | ## **CMPH** – Performance Data | Size
in mm | Patterns | Neck Vel m/s
TP Pa | 1.04
4 | 1.57
10 | 2.10
16 | 2.62
24 | 3.15
35 | 3.67
48 | |-------------------------------|--------------------------------|--|--|--|--|---|---|--| | | Return NC+0 Factors -SP=1.3 TP | Static Pa Total m³/s NC | 0.035
- | 0.052
- | 0.071
- | 20
0.087
23 | 0.104
28 | 0.123
33 | | 150
X | 42 43 B 43 | m ³ /s side
0.75
throw m 0.50 | A B
0.012 0.006
0.7 0.5
0.9 0.6 | A B
0.017 0.008
1.4 0.9
1.8 1.2 | A B
0.024 0.012
2.6 1.8
3.4 2.4 | A B
0.029 0.015
3.2 2.8
4.3 3.7 | A B
0.035 0.017
4.1 3.2
5.5 4.3 | A B
0.041 0.020
4.8 3.5
6.4 4.6 | | 225 | 31 | 0.25
m ³ /s side
0.75
throw m | 2.1 0.9
0.014 0.007
0.7 0.5
0.9 0.6 | 4.3 2.7
0.021 0.010
1.6 1.1
2.1 1.5 | 6.1 5.8
0.030 0.012
2.8 1.8
3.7 2.4 | 7 6.4
0.037 0.015
3.5 2.8
4.6 3.7 | 8.2 7
0.044 0.018
4.4 3.5
5.8 4.6 | 9.4 7.3
0.052 0.021
5.0 3.9
6.7 5.2 | | | 32 | 0.25
m ³ /s side
0.75 | 1.8 1.2
0.013 0.011
0.7 0.7
0.9 0.9 | 5.5 3.0
0.020 0.017
1.6 1.1
2.1 1.5 | 6.4 5.8
0.027 0.022
3.0 2.3
4.0 3.0 | 7.3 6.4
0.033 0.028
3.9 3.0
5.2 4.0 | 8.5 7.3
0.040 0.033
4.6 3.7
6.1 4.9 | 9.7 7.9
0.046 0.039
5.5 4.4
7.3 5.8 | | | A 22, 23 | 0.25
m ³ /s side
0.75 | 2.1 1.5
0.018
0.8 | 4.6 3.0
0.026
2.0 | 6.7 6.1
0.035
3.6 | 7.9 7.0
0.043
4.7 | 9.1 7.6
0.052
5.5 | 10.1 8.5
0.061
6.6 | | AD
0.033 | 52 | throw m 0.50
0.25
m ³ /s side 0.75 | 1.1
2.6
0.023 0.120
1.1 0.5 | 2.6
5.5
0.035 0.017
2.6 1.1 | 4.8
8.0
0.047 0.024
3.5 1.8 | 6.2
9.5
0.058 0.029
4.6 2.8 | 7.3
11.0
0.069 0.035
5.5 3.5 | 8.8
12.1
0.082 0.041
6.2 3.9 | | m² | 55 53 53 | throw m 0.50
0.25
m ³ /s side
0.75 | 1.5 0.6
3.0 1.2
0.035
1.7 | 3.4 1.5
6.1 3.0
0.052
3.3 | 4.6 2.4
7.3 5.8
0.071
4.4 | 6.1 3.7
8.8 6.4
0.087
6.1 | 7.3 4.6
10.1 7.3
0.104
6.8 | 8.2 5.2
10.7 7.9
0.123
8.1 | | | Return NC+2 | throw m 0.50
0.25
Total m ³ /s
NC | 2.2
4.0
0.047 | 4.4
7.7
0.071 | 5.9
9.5
0.094 | 8.1
11.7
0.118
23 | 9.1
12.4
0.142
28 | 10.8
13.5
0.165
33 | | 150 | Factors -SP=1.7 TP | m ³ /s side
0.75 | A B 0.018 0.006 0.7 0.7 | A B 0.027 0.009 1.6 0.9 | A B 0.035 0.012 3.0 2.0 | A B 0.044 0.015 3.5 3.0 | A B 0.053 0.018 4.4 3.5 | A B 0.062 0.021 5.0 4.4 | | 300
X | 42 43 A43 | throw m 0.50
0.25
m ³ /s side
0.75 | 0.9 0.9
2.4 1.5
0.020 0.006
0.7 0.7 | 2.1 1.2
4.6 2.7
0.031 0.009
1.8 1.4 | 4.0 2.7
6.7 8.1
0.041 0.012
3.0 2.6 | 4.6 4.0
7.3 6.7
0.052 0.015
3.9 3.0 | 5.8 4.6
8.5 7.3
0.062 0.018
5.0 3.9 | 6.7 5.8
10.1 8.5
0.072 0.021
5.7 4.6 | | | 31 | throw m 0.50
0.25
m ³ /s side 0.75 | 0.9 0.9
2.1 1.5
0.023 0.012
0.9 0.9 | 2.4 1.8
5.8 3.7
0.035 0.018
2.3 1.6 | 4.0 3.4
7.0 6.1
0.047 0.024
3.2 2.6 | 5.2 4.0
7.9 7.0
0.060 0.029
4.4 3.2 | 6.7 5.2
9.7 7.9
0.071 0.035
5.0 4.1 | 7.6 6.1
10.1 9.1
0.083 0.041
5.9 5.0 | | | 32
A | throw m 0.50
0.25
m ³ /s side 0.75 | 1.2 1.2
2.7 2.1
0.024
1.1 | 3.0 2.1
6.1 5.5
0.035
2.2 | 4.3 3.4
7.0 6.1
0.047
3.8 | 5.8 4.3
8.5 8.5
0.059
5.2 | 6.7 5.5
9.7 8.2
0.071
6.0 | 7.9 6.7
10.4 9.7
0.083
7.1 | | AD
0.045 | 22, 23 | throw m 0.50
0.25
m ³ /s side 0.75 | 1.5
3.3
0.036 0.011
1.4 0.7 | 2.9
5.9
0.054 0.017
2.8 1.4 | 5.1
8.4
0.071 0.023
3.9 2.6 | 6.9
10.2
0.090 0.028
5.0 3.0 | 8.0
11.7
0.108 0.034
5.9 3.9 | 9.5
12.4
0.125 0.040
6.6 4.6 | | m² | 52
55
55
53 | throw m 0.50
0.25
m ³ /s side
0.75 | 1.8 0.9
3.4 1.5
0.047
2.0 | 3.7 1.8
6.4 3.7
0.071
3.6 | 5.2 3.4
7.9 6.1
0.094
5.3 | 6.7 4.0
9.7 7.0
0.118
6.3 | 7.9 5.2
10.4 7.9
0.142
7.7 | 8.8 6.1
12.2 9.1
0.165
8.5 | | | Return NC+2 | throw m 0.50
0.25
Total m ³ /s
NC | 2.6
6.2
0.059 | 4.8
8.4
0.087 | 7.0
10.2
0.118 | 8.4
12.1
0.146
23 | 10.2
13.2
0.175
28 | 11.3
15.0
0.205
33 | | 150 | Factors -SP=2.0 TP | m³/s side 0.75 | A B 0.029 1.4 | A B 0.044 3.0 | A B 0.059 4.1 | A B 0.073 5.5 | A B
0.087
6.6 | A B 0.103 7.7 | | x
375 | 22, 23 | throw m 0.50
0.25
m³/s side 0.75 | 1.8
3.7
0.047 0.012
1.6 0.9 | 4.0
7.3
0.070 0.017
3.2 1.6 | 5.5
8.8
0.094 0.024
4.4 2.8 | 7.3
11.0
0.117 0.029
5.5 3.2 | 8.8
12.1
0.140 0.035
6.2 4.1 | 10.2
13.2
0.165 0.040
7.1 5.0 | | AD | 52 55 54 53 | throw m 0.50
0.25
m ³ /s side | 2.1 1.2
5.5 2.1
0.059 | 4.3 2.1
7.0 3.7
0.087 | 5.8 3.7
8.5 6.4
0.118 | 7.3 4.3
10.1 7.0
0.146 | 8.2 5.5
10.7 8.2
0.175 | 9.4 6.7
12.5 9.7
0.205 | | 0.056
m² | Return NC+3 | 0.75
throw m 0.50
0.25
Total m³/s | 2.2
2.9
7.0
0.071 | 3.8
5.1
8.4
0.106 | 5.5
7.3
11.0
0.142 | 6.8
9.1
12.1
0.177 | 8.3
11.0
14.6
0.212 | 9.1
12.1
15.7
0.248 | | 150 | Factors -SP=2.8 TP | MC
m³/s side | A B 0.035 | -
A B
0.053 | -
A B
0.071 | 23
A B
0.088 | A B
0.106 | 33
A B
0.124 | | 450
AD | ^A 22, 23 | throw m 0.50
0.25
m ³ /s side | 1.7
2.2
4.0
0.071 | 3.3
4.4
7.7
0.106 | 4.4
5.9
9.5
0.142 | 6.0
8.0
11.7
0.177 | 6.8
9.1
12.4
0.212 | 8.0
10.6
13.6
0.248 | | 0.068
m² | 12, 13 | 0.75
throw m 0.50
0.25
Total m ³ /s | 2.5
3.3
7.3
0.083 | 4.1
5.5
8.8
0.123 | 6.1
8.1
11.7
0.165 | 7.1
9.5
12.4
0.205 | 8.5
11.3
15.0
0.245 | 9.6
12.8
17.6
0.288 | | 150
X
525 | Return NC+4 Factors -SP=3.4TP | NC | - A B | - A B 0.123 | - A B | 23
A B
0.205 | 28
A B
0.245 | 33
A B
0.288 | | AD
0.079
m ² | 12, 13 | m ³ /s side
0.75
throw m 0.50
0.25 | 2.5
3.3
7.3 | 4.4
5.9
9.1 | 6.3
8.4
12.1 | 7.4
9.9
12.8 | 9.1
12.1
15.7 | 9.6
12.8
17.9 | | | Return NC+5 Factors -SP=4.1 TP | Total m³/s
NC | 0.071
-
A B | 0.106
-
A B | 0.142
-
A B | 0.177
28
A B | 0.212
33
A B | 0.248
38
A B | | 225
x
300 | 42 B 43 | m ³ /s side _{0.75}
throw m 0.50
0.25 | 0.023 0.013
0.9 0.7
1.2 0.9
2.7 2.1 | 0.033 0.020
2.3 1.6
3.0 2.1
6.1 5.5 | 0.044 0.027
3.0 2.8
4.0 3.7
7.0 6.4 | 0.056 0.033
4.4 3.2
5.8 4.3
8.5 7.0 | 0.066 0.040
5.3 4.1
7.0 5.5
9.7 8.2 | 0.078 0.046
5.9 5.3
7.9 7.0
10.4 10.1 | | | 31 | m ³ /s side _{0.75}
throw m _{0.50}
_{0.25} | 0.029 0.013
1.1 0.7
1.5 0.9
3.0 2.4 | 0.043 0.020
2.6 1.6
3.4 2.1
6.1 5.5 | 0.058 0.027
3.5 2.8
4.6 3.7
7.3 6.4 | 0.072 0.033
4.6 3.5
6.1 4.6
9.1 7.3 | 0.086 0.040
5.5 4.4
7.3 5.8
10.1 8.5 | 0.101 0.046
6.2 5.3
8.2 7.0
10.7 9.7 | | 0.068
m ² | 32 | m ³ /s side _{0.75}
throw m 0.50
0.25 | 0.023 0.023
1.4 0.9
1.8 1.2
3.4 2.4 | 0.035 0.035
2.8 1.8
3.7 2.4
6.4 5.8 | 0.047 0.047
3.7 3.0
4.9 4.0
7.9 6.7 | 0.059 0.059
5.0 3.9
6.7 5.2
9.7 7.9 | 0.071 0.071
5.7 4.6
7.6 6.1
10.4 9.1 | 0.083 0.083
6.6 5.3
8.8 7.0
11.3 9.1 | | | 52 B 54 53 | m ³ /s side _{0.75}
throw m _{0.50}
_{0.25} | 0.045 0.026
1.8 0.7
2.4 0.9
5.8 2.4 | 0.066 0.040
3.5 1.6
4.6 2.1
7.3 5.5 | 0.089 0.053
4.6 2.8
6.1 3.7
8.8 6.4 | 0.111 0.066
5.7 3.5
7.6 4.6
10.1 7.3 | 0.133 0.079
6.4 4.4
8.5 5.8
11.3 8.5 | 0.155 0.093
7.3 5.3
9.7 7.0
13.1 9.7 | # Performance Data – CMPH | Size
in mm | Patterns | Neck Vel m/s
TP Pa | 1.04
5 | 1.57
10 | 2.10
16 | 2.62
24 | 3.15
35 | 3.67
48 | |-------------------------------|----------------------------------|--|---|---|---|---|--|---| | | Return NC+4 | Static Pa Total m³/s NC | 0.088 | 0.132
- | 0.177
- | 20
0.221
28 | 0.266
33 | 0.310
38 | | 225
x | Factors -SP=1.8 TP A A B B 43 | m ³ /s side
0.75
throw m 0.50 | A B 0.031 0.013 1.1 0.7 1.5 0.9 | A B
0.046 0.020
2.6 1.8
3.4 2.4 | A B
0.062 0.027
3.5 2.8
4.6 3.7 | A B
0.078 0.033
4.6 3.5
6.1 4.6 | A B
0.093 0.040
5.5 4.4
7.3 5.8 | A B 0.109 0.046 6.2 5.5 8.2 7.3 | | 375 | 31 | 0.25
m³/s side
0.75
throw m | 3.0 2.4
0.037 0.013
1.4 0.7
1.8 0.9 | 6.1 5.8
0.056 0.020
2.8 1.8
3.7 2.4 | 7.3 6.4
0.075 0.027
3.7 3.0
4.9 4.0 | 9.1 7.3
0.094 0.033
5.0 3.9
6.7 5.2 | 10.1 8.5
0.113 0.040
5.7 4.6
7.6 6.1 | 11 10.1
0.132 0.046
6.6 5.5
8.8 7.3 | | | 32 | 0.25
m³/s side
0.75
throw m 0.50 | 3.4 2.4
0.037 0.026
1.6 0.9
2.1 1.2 | 6.4 5.8
0.055 0.039
3.0 2.3
4.0 3.0 | 7.9 6.7
0.074 0.052
3.9 3.0
5.2 4.0 | 9.7 7.9
0.092 0.064
5.3 4.4
7.0 5.8 | 10.4 9.1
0.111 0.078
6.2 5.0
8.2 6.7 | 11.3 10.1
0.129 0.090
7.1 5.9
9.4 7.9 | | | A 22, 23 | 0.25
m³/s side
0.75
throw m | 4.6 2.7
0.044
2.0
2.6 | 6.7 6.1
0.066
3.6
4.8 | 8.2 7.0
0.089
4.7
6.2 | 10.1 8.5
0.111
6.3
8.4 | 10.7 9.8
0.133
7.4
9.9 | 12.5 10.4
0.155
8.5
11.3 | | AD
0.084
m ² | 52 B 54 53 | 0.25
m³/s side
0.75
throw m 0.50 | 5.5
0.062 0.026
1.8 0.7
2.4 0.9 | 8.0
0.093 0.039
3.5 1.8
4.6 2.4 | 9.9
0.124 0.053
5.0 3.0
6.7 4.0 | 12.1
0.155 0.066
5.9 3.9
7.9 5.2 | 12.8
0.159 0.067
6.8 5.0
9.1 6.7 | 15.0
0.218 0.092
7.6 5.5
10.1 7.3 | | | 12, 13 | 0.25
m ³ /s side
0.75
throw m 0.50 | 5.8 2.4
0.088
2.8
3.7 | 7.3 5.8
0.132
4.4
5.9 | 9.8 6.7
0.177
6.3
8.4 | 10.4 7.9
0.221
7.7
10.2 | 12.2 9.8
0.266
9.1
12.1 | 13.7 10.1
0.310
9.6
12.8 | | | Return NC+4 Factors -SP=2.2 TP | Total m ³ /s | 7.3
0.105
- | 9.1
0.159
- | 12.1
0.213
- | 13.2
0.265
28 | 15.7
0.319
33 | 17.9
0.372
38 | | 225
X
450 | 42 4 B 43 | m ³ /s side
0.75
throw m 0.50 | A B
0.040 0.013
1.4 0.9
1.8 1.2 | A B 0.060 0.020 2.8 2.0 3.7 2.7 | A B 0.080 0.027 3.9 3.0 5.2 4.0 | A B 0.100 0.033 5.0 3.9 6.7 5.2 | A B 0.120 0.040 5.7 4.8 7.6 6.4 | A B 0.140 0.046 6.6 5.7 8.8 7.6 | | 450 | A 31 | 0.25
m³/s side
0.75
throw m 0.50 | 3.7 2.7
0.046 0.013
1.6 0.9
2.1 1.2 | 6.4 6.1
0.070 0.020
3.0 2.3
4.0 3.0 | 7.9 6.7
0.093 0.027
3.9 3.2
5.2 4.3 | 9.8 7.9
0.116 0.033
5.3 4.4
7.0 5.8 | 10.1 9.4
0.140 0.040
6.2 5.0
8.2 6.7 | 11.9 10.1
0.163 0.046
7.1 5.9
9.4 7.9 | | | ^ 22, 23 | 0.25
m³/s side
0.75
throw m 0.50 | 4.6 2.7
0.053
2.0
2.6 | 6.7 6.1
0.080
3.8
5.1 | 8.2 7.0
0.107
5.2
6.9 | 10.1 8.5
0.133
6.6
8.8 | 10.7 9.8
0.160
7.7
10.2 | 12.5 10.4
0.186
9.1
12.1 | | 0.101
m ² | 52 B 54 53 | 0.25
m³/s side
0.75
throw m 0.50 | 0.079 0.026
2.3 0.9
3.0 1.2 | 8.4
0.120 0.039
3.7 2.3
4.9 3.0 | 10.2
0.160 0.053
5.3 3.2
7.0 4.3 | 12.1
0.200 0.065
6.6 4.4
8.8 5.8 | 13.5
0.240 0.079
7.4 5.0
9.8 6.7 | 15.7
0.280 0.092
8.0 5.9
10.7 7.9 | | | 55 21, 13 | 0.25
m³/s side
0.75
throw m 0.50 | 6.1 2.7
0.105
3.3
4.4 | 7.6 6.1
0.159
5.2
6.9 | 10.1 7.0
0.213
6.6
8.8 | 11.3 8.5
0.265
8.3
11.0 | 12.8 9.8
0.319
9.6
12.8 | 14.9 10.4
0.372
9.9
13.2 | | | Return NC+5 Factors -SP=2.6 TP | 0.25 Total m³/s NC | 7.7
0.123
- | 10.2
0.185 | 12.4
0.248
23 | 14.6
0.309
28 | 17.2
0.372
33 | 18.3
0.434
38 | | 225
X
525 | 42 43 A43 | m³/s side
0.75
throw m 0.50 | A B 0.049 0.013 1.4 0.9 1.8 1.2 | A B 0.073 0.020 3.0 2.0 4.0 2.7 | A B
0.097 0.027
3.9 3.2
5.2 4.3
7.9 7.0 | A B
0.122 0.033
5.0 4.1
6.7 5.5 | A B 0.146 0.040 5.9 5.0 7.9 6.7 | A B
0.171 0.046
6.8 5.9
9.1 7.9 | | 525 | 31 | 0.25
m³/s side
0.75
throw m 0.50
0.25 | 4.3 2.7
0.055 0.013
1.6 0.9
2.1 1.2
5.2 2.7 | 6.7 6.1
0.083 0.020
3.2 2.3
4.3 3.0
7.0 6.1 | 7.9 7.0
0.111 0.027
4.4 3.5
5.8 4.6
8.5 7.3 | 10.1 8.2
0.138 0.033
5.5 4.4
7.3 5.8
10.1 8.5 | 10.4 9.8
0.166 0.040
6.4 5.3
8.5 7.0
11.0 10.1 | 12.2 10.4
0.194 0.046
7.4 6.2
9.8 8.2
12.8 10.7 | | 0.118
m ² | ^A 22, 23 | m ³ /s side 0.75
throw m 0.50 | 0.062
2.2
2.9
6.9 | 0.093
3.8
5.1
8.4 | 0.124
5.5
7.3
11.0 | 0.155
6.8
9.1
12.1 | 0.186
8.3
11.0
14.6 | 0.217
9.3
12.4
17.2 | | | 52
55
55
55
54
53 | m ³ /s side
0.75
throw m 0.50
0.25 | 0.097 0.026
2.6 0.9
3.4 1.2
6.4 2.7 | 0.146 0.039
3.9 2.3
5.2 3.0
7.9 6.1 | 0.196 0.052
5.3 3.5
7.0 4.6
10.1 7.3 | 0.244 0.065
6.6 4.4
8.8 5.8
11.3 8.5 | 0.294 0.078
7.6 5.3
10.1 7.0
13.1 10.1 | 0.342 0.092
8.3 6.2
11.0 8.2
15.5 10.7 | | | Return NC+3 Factors -SP=1.7 TP | Total m³/s
NC | 0.117
-
A B | 0.177
-
A B | 0.236
23
A B | 0.295
28
A B | 0.354
33
A B | 0.413
38
A B | | 300
X
375 | 43 A 43 | m³/s side
0.75
throw m 0.50
0.25 | 0.036 0.023
1.4 0.9
1.8 1.2
4.3 2.7 | 0.053 0.035
3.0 2.0
4.0 2.7
6.7 6.1 | 0.071 0.047
3.9 3.2
5.2 4.3
7.9 7.0 | 0.089 0.059
5.0 4.1
6.7 5.5
9.7 8.2 | 0.106 0.071
5.9 5.0
7.9 6.7
10.4 9.8 | 0.123 0.083
6.8 5.7
9.1 7.6
12.2 10.1 | | | 31 | m³/s side
0.75
throw m 0.50
0.25 | 0.047 0.023
1.6 0.9
2.1 1.2
5.2 2.7 | 0.071 0.035
3.0 2.3
4.0 3.0
6.7 6.1 | 0.095 0.047
4.4 3.2
5.8 4.3
8.5 7.0 | 0.118 0.059
5.3 4.4
7.0 5.8
10.1 8.5 | 0.142 0.071
6.4 5.3
8.5 7.0
11.0 10.1 | 0.165 0.083
7.1 6.2
9.4 8.2
12.5 10.7 | | | △ A B B | m³/s side
0.75
throw m 0.50
0.25 | 0.037 0.040
1.1 1.8
1.5 2.4
3.0 5.8 | 0.055 0.061
2.8 3.2
3.7 4.3
6.4 7.0 | 0.074 0.081
3.5 4.6
4.6 6.1
7.3 9.1 | 0.092 0.101
4.8 5.7
6.4 7.6
9.4 10.1 | 0.111 0.122
5.5 6.8
7.3 9.1
10.1 12.2 | 0.129 0.142
6.4 7.8
8.5 10.4
11.0 14.3 | | | A 22,23 | m ³ /s side
0.75
throw m 0.50
0.25 | 0.059
2.2
2.9
6.9 | 0.088
3.8
5.1
8.4 | 0.118
5.5
7.3
11.0 | 0.148
6.8
9.1
12.1 | 0.177
8.3
11.0
14.6 | 0.207
9.3
12.4
17.2 | | 0.113
m ² | 52 55 54
55 53 | m ³ /s side
0.75
throw m 0.50
0.25 | 0.070 0.047
2.6 0.9
3.4 1.2
6.4 2.7 | 0.106 0.071
3.9 2.3
5.2 3.0
7.9 6.1 | 0.142 0.094
5.3 3.5
7.0 4.6
10.1 7.3 | 0.177 0.118
6.6 4.4
8.8 5.8
11.3 8.5 | 0.212 0.142
7.6 5.3
10.1 7.0
13.1 10.1 | 0.248 0.165
8.3 6.2
11.0 8.2
15.5 10.7 | | | 12, 13 | m ³ /s side
0.75
throw m 0.50
0.25 | 0.117
3.3
4.4
7.7 | 0.177
5.2
6.9
10.2 | 0.236
6.6
8.8
12.4 | 0.295
8.3
11.0
14.6 | 0.354
9.9
13.2
17.6 | 0.413
10.1
13.5
18.7 | ## **CMPH** – Performance Data | Size | Patterns | Neck Vel m/s
TP Pa | 1.04 | 1.57
10 | 2.10
16 | 2.62
24 | 3.15
35 | 3.67
48 | |-------------------------------|--------------------------------|--|--|-----------------------------------|-----------------------------------|-------------------------------------|-------------------------------------|--------------------------------------| | in mm | Return NC+4 | Static Pa
Total m³/s | 5
3
0.140 | 0.212 | 13
0.283
23 | 20
0.354
28 | 30
0.425
33 | 40
0.496
38 | | 200 | Factors -SP=2.0 TP | NC
m³/s side | A B 0.047 0.023 | A B 0.071 0.035 | A B
0.095 0.047 | A B
0.118 0.059 | A B 0.142 0.071 6.4 5.3 | A B
0.165 0.083 | | 300
X
450 | B 42 | 0.75
throw m 0.50
0.25 | 1.6 1.1
2.1 1.5
5.2 2.7
0.059 0.023 | 3.2 2.3
4.3 3.0
6.7 6.1 | 5.8 4.6
8.5 7.3 | 7.3 5.8
10.1 8.5 | 8.5 7.0
11.0 10.1 | 9.8 7.9
12.8 10.4 | | | 31 | m ³ /s side
0.75
throw m 0.50 | 1.6 1.1
2.1 1.5 | 0.088 0.035
3.2 2.6
4.3 3.4 | 0.118 0.047
4.4 3.5
5.8 4.6 | 0.147 0.059
5.7 4.6
7.6 6.1 | 0.177 0.071
6.6 5.9
8.8 7.9 | 7.6 6.4
10.1 8.5 | | | A 22 | 0.25
m³/s side
0.75 | 5.5 3.0
0.053 0.044
2.0 1.4 | 7.0 6.1
0.079 0.066
3.5 2.8 | 8.5 7.3
0.106 0.089
5.0 3.7 | 10.1 8.8
0.133 0.111
5.9 5.0 | 11.3 10.4
0.159 0.133
7.1 5.7 | 13.1 11.0
1.860 0.155
8.0 6.6 | | | 32 | throw m 0.50
0.25
m³/s side | 2.7 1.8
6.1 3.4
0.070 | 4.6 3.7
7.3 6.4
0.106 | 6.7 4.9
9.8 7.9
0.142 | 7.9 6.7
10.4 9.8
0.177 | 9.4 7.6
12.5 10.4
0.213 | 10.7 8.8
14.6 11.3
0.248 | | | ^A 22, 23 | 0.75
throw m 0.50
0.25 | 2.5
3.3
7.3 | 4.1
5.5
8.8 | 6.0
8.0
11.7 | 7.1
9.5
12.4 | 8.5
11.3
15.0 | 9.6
12.8
17.6 | | 0.135
m ² | 52 54 53 54 | m ³ /s side
0.75
throw m 0.50 | 0.093 0.047
2.8 1.1
3.7 1.5 | 0.141 0.071
4.1 2.6
5.5 7.1 | 0.189 0.094
5.7 3.5
7.6 4.6 | 0.236 0.118
7.1 4.6
9.4 6.1 | 0.283 0.142
7.8 5.7
10.4 7.6 | 0.331 0.165
8.5 6.4
11.3 8.5 | | | | 0.25
m ³ /s side
0.75
throw m 0.50 | 6.4 3.0
0.140
3.6 | 8.2 3.4
0.212
5.5 | 10.4 7.3
0.283
7.1 | 12.5 8.8
0.354
8.5 | 14.3 10.4
0.425
9.9 | 15.8 11.0
0.496
10.4 | | | Return NC+6 | throw m 0.50
0.25
Total m ³ /s | 4.8
8.0
0.165 | 7.3
10.6
0.248 | 9.5
12.8
0.330 | 11.3
15.0
0.413 | 13.2
17.9
0.496 | 13.9
19.4
0.578 | | | Factors -SP=2.3 TP | NC | -
А В | -
A B | 23
A B | 28
A B | 33
A B | 38
A B | | 300
X | 42 43 | m ³ /s side
0.75
throw m 0.50 | 0.060 0.023
1.8 1.1
2.4 1.5 | 0.089 0.035
3.2 2.6
4.3 3.4 | 0.118 0.047
4.4 3.5
5.8 4.6 | 0.148 0.059
5.7 4.6
7.6 6.1 | 0.177 0.071
6.6 5.5
8.8 7.3 | 0.206 0.083
7.6 6.2
10.1 8.2 | | 525 | , . | 0.25
m³/s side
0.75 | 5.8 3.0
0.083
2.5 | 7.0 6.1
0.124
4.1 | 8.5 7.3
0.165
6.0 | 10.1 8.8
0.207
7.1 | 11.3 10.1
0.248
8.5 | 13.4 10.7
0.289
9.6 | | 0.158
m ² | 22, 23 | throw m 0.50
0.25
m³/s side | 3.3
7.3
0.118 0.047 | 5.5
8.8
0.177 0.071 | 8.0
11.7
0.236 0.094 | 9.5
12.4
0.295 0.118 | 11.3
15.0
0.355 0.141 | 12.8
17.6
0.413 0.165 | | | 52 54
55 53 | 0.75
throw m 0.50
0.25 | 2.8 1.4
3.7 1.8
6.4 3.4 | 4.4 2.8
5.8 3.7
8.5 6.4 | 5.9 3.7
7.9 4.9
10.4 7.6 | 7.4 4.8
9.8 6.4
12.8 9.4 | 8.0 5.9
10.7 7.9
14.9 10.4 | 8.7 6.6
11.6 8.8
16.2 11.3 | | 300 | Return NC+6 | Total m³/s
NC | 0.187 | 0.283 | 0.378
23 | 0.472
28 | 0.566
33 | 0.661
38 | | 600 | Factors -SP=2.7 TP | m³/s side | A B 0.071 0.023 | A B 0.106 0.035 | A B 0.142 0.047 | A B 0.177 0.059 | A B 0.212 0.071 | A B 0.248 0.083 | | AD
0.180
m ² | 42 43 A43 | 0.75
throw m 0.50
0.25 | 1.8 1.4
2.4 1.8
58 3.4 | 3.2 2.8
4.3 3.7
7.0 6.4 | 4.6 3.5
6.1 4.6
9.1 7.3 | 5.9 4.8
79 6.4
10.4 9.1 | 6.8 5.5
9.1 7.3
12.2 10.1 | 7.8 6.4
10.4 8.5
14.0 11.0 | | | Return NC+5 Factors -SP=2.1 TP | Total m³/s
NC | 0.177 | 0.264
- | 0.354
23 | 0.441
28 | 0.532
33 | 0.618
38 | | 375
X | ▲ A | m³/s side
0.75 | 0.052 0.037
1.8 1.1 | A B 0.077 0.055 3.0 2.8 | A B
0.103 0.074
4.6 3.5 | A B
0.129 0.092
5.7 4.6 | A B
0.155 0.111
6.8 5.5 | A B
0.180 0.129
7.6 6.2 | | 450 | 42 43 A 43 | throw m 0.50
0.25
m³/s side | 2.4 1.5
5.8 3.0
0.069 0.037 | 4.0 3.7
6.7 6.4
0.105 0.055 | 6.1 4.6
9.1 7.3
0.140 0.074 | 7.6 6.1
10.1 8.8
0.175 0.092 | 9.1 7.3
12.2 10.1
0.210 0.111 | 10.1 8.2
13.4 10.7
0.245 0.129 | | AD
0.169 | 31 | 0.75
throw m 0.50
0.25 | 2.0 1.4
2.7 1.8
6.1 3.4 | 3.5 2.8
4.6 3.7
7.3 6.4 | 5.0 3.7
6.7 4.9
9.8 7.6 | 5.9 5.0
7.9 6.7
10.4 9.8 | 7.1 5.9
9.4 7.9
12.5 10.4 | 8.0 6.6
10.7 8.8
14.6 11.3 | | m ² | 32 | m ³ /s side
0.75 | 0.053 0.061
1.6 2.3
2.1 3.0 | 0.079 0.093
3.0 3.7
4.0 4.9 | 0.106 0.124
3.9 5.0
5.2 6.7 | 0.133 0.155
5.3 6.2
7.0 8.2 | 0.159 0.186
6.2 7.4
8.2 9.8 | 0.186 0.217
7.1 8.0
9.4 10.7 | | | Return NC+6 | 0.25
Total m³/s | 4.6 6.1
0.205 | 6.7 7.6
0.309 | 8.2 10.1
0.413
23 | 10.1 10.7
0.516
28 | 10.7 12.8
0.620
33 | 12.5 14.9
0.723
38 | | | Factors -SP=2.2 TP | NC | A B | A B | A B | A B | A B | A B | | 375
X
525 | 31 | m ³ /s side
0.75
throw m 0.50 | 0.084 0.037
2.0 1.4
2.7 1.8 | 0.127 0.055
3.7 3.0
4.9 4.0 | 0.170 0.074
5.3 3.9
7.0 5.2 | 0.212 0.092
6.2 5.3
8.2 7.0 | 0.255 0.111
7.6 5.9
10.1 7.9 | 0.297 0.129
8.0 6.8
10.7 9.1 | | 525 | A 32 | 0.25
m³/s side
0.75 | 6.4 4.3
0.072 0.067
2.0 1.8 | 7.6 6.7
0.108 0.100
3.9 3.2 | 9.8 7.9
0.145 0.134
5.5 4.4 | 10.7 10.1
0.181 0.168
6.4 5.5 | 13.1 10.4
0.217 0.202
7.6 6.4 | 14.9 11.6
0.253 0.235
8.3 7.4 | | | 32 | throw m 0.50
0.25
m³/s side | 2.7 2.4
6.4 5.5
0.103 | 5.2 4.3
8.2 8.2
0.155 | 7.3 5.8
10.1 8.5
0.207 | 8.5 7.3
11.0 10.1
0.258 | 10.1 8.5
13.7 11.6
0.310 | 11.0 9.8
15.2 12.8
0.362 | | | ^A 22, 23 | 0.75
throw m 0.50
0.25 | 2.8
3.7
7.7 | 4.7
6.2
9.9 | 6.6
8.8
12.1 | 7.7
10.2
13.2 | 9.1
12.1
16.5 | 9.9
13.2
18.3 | | AD
0.197
m ² | 52 | m ³ /s side
0.75
throw m 0.50 | 0.132 0.073
3.0 1.4
4.0 1.8 | 0.199 0.110
4.8 3.0
6.4 4.0 | 0.266 0.147
6.2 3.9
8.2 5.2 | 0.332 0.184
7.6 5.3
10.1 7.0 | 0.399 0.221
8.3 5.9
11.0 7.9 | 0.465 0.258
8.7 6.8
11.6 9.1 | | | | 0.25
m³/s side | 7.0 4.3
0.205
3.8 | 9.4 6.7
0.309
6.1 | 10.7 7.9
0.413
8.0 | 13.7 9.1
0.516
9.1 | 15.2 10.4
0.620
10.1 | 16.5 11.6
0.723
10.7 | | | 12, 13 | 0.75
throw m 0.50
0.25 | 5.1
8.4 | 8.1
11.7 | 10.6
13.5 | 12.1
17.2 | 13.5
18.7 | 14.3
19.8 | | | Return NC+7 Factors -SP=2.7TP | Total m³/s
NC | 0.234 | 0.353 | 0.473
23 | 0.590
28 | 0.709
33 | 0.826
38 | | 375 | A B | m³/s side
0.75 | 0.080 0.037
2.3 1.4 | A B 0.122 0.055 3.5 3.0 | A B
0.163 0.074
5.0 3.9 | A B 0.203 0.092 6.2 5.0 | A B 0.244 0.111 7.1 5.9 | A B
0.284 0.129
7.8 6.6 | | 600
X | B 42 | throw m 0.50
0.25
m³/s side | 3.0 1.8
6.1 4.3
0.117 | 4.6 4.0
7.3 6.7
0.177 | 6.7 5.2
9.8 8.2
0.237 | 8.2 6.7
10.7 9.8
0.295 | 9.4 7.9
12.5 10.4
0.355 | 10.4 8.8
14.6 11.6
0.413 | | | ^A 22, 23 | 0.75
throw m 0.50
0.25 | 3.3
4.4
7.7 | 5.2
6.9
10.2 | 6.8
9.1
12.1 | 8.0
10.6
13.9 | 9.3
12.4
17.6 | 10.1
13.5
19.0 | | AD
0.225
m ² | 52 | m ³ /s side
0.75
throw m 0.50 | 0.161 0.073
3.2 1.6
4.3 2.1 | 0.243 0.110
5.0 3.2
6.7 4.3 | 0.325 0.148
6.4 4.4
8.5 5.8 | 0.405 0.185
7.6 5.5
10.1 7.3 | 0.487 0.222
8.5 6.2
11.3 8.2 | 0.567 0.259
8.9 7.1
11.9 9.4 | | | <u></u> | m ³ /s side 0.75 | 7.0 5.2
0.234
3.8 | 9.8 6.7
0.353
6.1 | 11.3 8.2
0.473
8.3 | 13.7 10.1
0.590
9.3 | 15.5 10.7
0.709
10.1 | 16.8 12.5
0.826
10.7 | | | 12, 13 | throw m 0.50
0.25 | 5.8
5.1
8.8 | 8.1
11.7 | 8.3
11.0
14.6 | 9.3
12.4
17.6 | 10.1
13.5
19.4 | 10.7
14.3
20.1 | # Performance Data – CMPH | Size in mm | Patterns | Neck Vel m/s
TP Pa
Static Pa | 1.04
5 | 1.57
10 | 2.10
16 | 2.62
24 | 3.15
35 | 3.67
48 | |-------------------------|-----------------------------------|--|---|---|--|---|--|---| | | Return NC+6 | Total m³/s | 3
0.246 | 0.371 | 13
0.496 | 20
0.619 | 30
0.744 | 0.867 | | | Factors -SP=2.3 TP | NC | -
A B | A B | 23
A B | 28
A B | 33
A B | 38
A B | | 450
x
525 | 31 | m ³ /s side
0.75
throw m 0.50
0.25 | 0.097 0.05
2.6 1.6
3.4 2.1
6.4 5.2
0.123 | 3 0.146 0.079
3.9 3.2
5.2 4.3
7.9 6.7
0.186 | 0.195 0.106
5.3 4.4
7.0 5.8
10.1 8.5
0.248 | 0.243 0.133
6.6 5.5
8.8 7.3
11.3 10.1
0.310 | 0.292 0.159 7.6 6.2 10.1 8.2 13.7 10.7 0.372 | 0.341 0.186
8.3 7.4
11.0 9.8
15.2 12.8
0.434 | | AD | ^A 22, 23 | m ³ /s side
0.75
throw m 0.50
0.25
m ³ /s side | 3.3
4.4
7.7
0.193 0.05 | 5.2
6.9
10.2 | 6.8
9.1
12.1
0.390 0.106 | 8.0
10.6
14.6
0.487 0.132 | 9.3
12.4
17.9
0.585 0.159 | 10.1
13.5
19.4
0.681 0.186 | | 0.236
m² | 52 B 54 53 | 0.75
throw m 0.50
0.25
m³/s side | 3.2 1.6
4.3 2.1
7.0 5.2
0.246 | 5.0 3.2
6.7 4.3
9.8 6.7
0.371 | 6.6 4.4
8.8 5.8
11.6 8.5
0.496 | 7.6 5.5
10.1 7.3
14.0 10.1
0.619 | 8.5 6.2
11.3 8.2
15.5 10.7
0.744 | 8.9 7.4
11.9 9.8
16.8 12.8
0.867 | | | 12, 13 | 0.75
throw m 0.50
0.25 | 4.1
5.5
8.8 | 6.3
8.4
12.1 | 8.5
11.3
15.0 | 9.9
13.2
17.6 | 10.4
13.9
19.8 | 10.7
14.3
20.5 | | | Return NC+7
Factors -SP=2.6 TP | Total m³/s
NC | 0.281
-
A B | 0.424 | 0.567
23
A B | 0.707
28
A B | 0.851
33
A B | 0.991
38
A B | | 450
X
600 | 42 | m ³ /s side
0.75
throw m 0.50
0.25 | 0.088 0.05
2.6 1.6
3.4 2.1
6.4 5.2 | 3.9 3.0
5.2 4.0
7.9 7.0 | 0.178 0.106
5.5 4.1
7.3 5.5
10.1 8.5 | 0.221 0.133
6.4 5.3
8.5 7.0
11.3 10.1 | 0.267 0.159
7.6 6.4
10.1 8.5
13.7 11.0 | 0.310 0.186
8.3 7.1
11.0 9.4
15.5 12.5 | | | 31 | m ³ /s side
0.75
throw m 0.50
0.25
m ³ /s side | 0.114 0.05
2.8 1.8
3.7 2.4
6.4 5.8
0.094 0.09 | 4.4 3.2
5.8 4.3
8.5 7.0 | 0.230 0.106
5.7 4.6
7.6 6.1
10.1 8.8
0.189 0.189 | 0.287 0.133
6.8 5.7
9.1 7.6
12.2 10.1
0.236 0.236 | 0.346 0.159
8.0 6.6
10.7 8.8
14.6 11.3
0.284 0.284 | 0.403 0.186
8.5 7.6
11.3 10.1
15.5 13.1
0.330 0.330 | | | 32 | 0.75
throw m 0.50
0.25
m ³ /s side | 3.0 2.0
4.0 2.7
6.7 6.1 | 4.6 3.5
6.1 4.6
8.8 7.3
0.212 | 5.9 5.0
7.9 6.7
10.4 9.8 | 7.1 5.9
9.4 7.9
12.5 10.4
0.354 | 8.0 7.1
10.7 9.4
14.9 12.5
0.426 | 8.7 8.0
11.6 10.7
16.2 14.6
0.496 | | AD | A 22, 23 | 0.75
throw m 0.50
0.25
m ³ /s side | 3.6
4.8
8.0
0.228 0.05 | 5.5
7.3
10.6 | 7.1
9.5
12.4
0.461 0.106 | 8.5
11.3
15.0
0.574 0.133 | 9.6
12.8
18.3
0.691 0.160 | 10.4
13.9
19.8
0.805 0.186 | | 0.270
m² | 52
55
55
55
54
53 | 0.75
throw m 0.50
0.25
m³/s side | 3.5 1.8
4.6 2.4
7.3 5.8
0.281 | 5.3 3.2
7.0 4.3
10.1 7.0
0.424 | 6.8 4.6
9.1 6.1
12.2 8.8
0.567 | 7.8 5.7
10.4 7.6
14.3 10.1
0.707 | 8.7 6.6
11.6 8.8
15.8 11.3
0.851 | 9.2 7.6
12.2 10.1
17.1 13.1
0.991 | | | 12, 13 | 0.75
throw m 0.50
0.25 | 4.1
5.5
8.8 | 6.8
9.1
12.4 | 8.5
11.3
15.4 | 10.1
13.5
17.9 | 10.4
13.9
20.1 | 11.0
14.6
20.9 | | | Return NC+9 Factors -SP=3.2 TP | Total m³/s
NC | 0.369
-
A B | 0.556
-
A B | 0.744
23
A B | 0.928
28
A B | 1.116
33
A B | 1.301
38
A B | | 525
X
675 | 31 | m ³ /s side
0.75
throw m 0.50
0.25 | 0.148 0.07
3.0 2.0
4.0 2.7
6.7 6.1 | 2 0.224 0.108
4.6 3.5
6.1 4.6
9.1 7.3 | 0.300 0.145
5.9 5.0
7.9 6.7
10.4 9.8 | 0.374 0.181
7.1 5.9
9.4 7.9
12.5 10.4 | 0.450 0.217
8.5 7.1
11.3 9.4
15.5 12.5 | 0.524 0.253
8.7 7.8
11.6 10.4
16.2 13.7 | | | A 32 | m ³ /s side
0.75
throw m 0.50
0.25 | 0.125 0.11
3.2 2.3
4.3 3.0
7.0 6.1 | 5.0 3.9
6.7 5.2
9.8 7.9 | 0.252 0.239
6.4 5.0
8.5 6.7
11.0 10.1 | 0.315 0.298
7.6 6.4
10.1 8.5
13.4 11.6
0.464 | 0.379 0.359
8.3 7.6
11.0 10.1
15.2 13.1 | 0.441 0.418
18.9 8.0
11.9 10.7
16.5 14.9 | | | ^A 22, 23 | m ³ / s side
0.75
throw m 0.50
0.25 | 0.185
3.8
5.1
8.4 | 0.278
6.0
8.0
11.7 | 0.372
7.7
10.2
13.2 | 9.1
12.1
16.1 | 0.558
9.9
13.2
18.7 | 0.651
10.7
14.3
20.1 | | 0.354
m ² | 52 55 54
55 53 | m ³ /s side
0.75
throw m 0.50
0.25 | 0.297 0.07
3.7 2.0
4.9 2.7
7.6 6.1 | 5.5 3.5
7.3 4.6
10.4 7.3 | 0.599 0.145
7.1 5.0
9.4 6.7
12.5 9.8 | 0.748 0.180
8.0 5.9
10.7 7.9
14.9 10.4 | 0.899 0.217
8.7 7.1
11.6 9.4
16.2 12.5 | 1.048 0.253
9.4 7.8
12.5 10.4
17.4 13.7 | | | 12, 13 | m ³ /s side
0.75
throw m 0.50
0.25 | 0.369
4.7
6.2
9.5 | 0.556
7.1
9.5
12.8 | 0.744
8.8
11.7
15.7 | 0.928
10.4
13.9
19.0 | 1.116
10.7
14.3
20.5 | 1.301
11.6
15.4
21.6 | | 525
X
825 | Return NC+9 Factors -SP=3.3 TP | Total m³/s
NC | 0.450
-
A B | | 0.910
23
A B | 1.135
28
A B | 1.364
33
A B | 1.590
38
A B | | 0.433
m ² | 43 43 | m ³ / s side
0.75
throw m 0.50
0.25 | 0.153 0.07
3.0 2.3
4.0 3.0
6.7 6.1 | 2 0.232 0.108
4.6 3.5
6.1 4.6
8.8 7.3 | 0.310 0.145
5.9 5.0
7.9 6.7
10.4 9.7 | 0.387 0.181
7.1 5.9
9.4 7.9
12.5 10.4 | 0.465 0.217
8.0 7.1
10.7 9.4
15.2 12.5 | 0.542 0.253
8.7 7.6
11.6 10.1
16.2 13.7 | | 600 | Return NC+9 Factors -SP=3.5TP | Total m³/s
NC | 0.468
-
A B | 0.707
-
A B | 0.945
23
A B | 1.179
28
A B | 1.418
33
A B | 1.652
38
A B | | 750 | 42 43 A43 | m³/s side
0.75
throw m 0.50
0.25 | 0.140 0.09
3.0 2.3
4.0 3.0
6.7 6.1 | 4 0.212 0.141
4.8 3.5
6.4 4.6
9.1 7.3 | 0.284 0.189
6.2 5.0
8.2 6.7
10.7 9.8 | 0.354 0.236
7.4 6.2
9.8 8.2
12.8 10.7 | 0.425 0.284
8.0 7.1
10.7 9.4
15.2 12.5 | 0.496 0.330
8.9 8.3
11.9 11.0
16.5 14.6 | | 0.450
m ² | ▲ 32 | m ³ /s side
0.75
throw m 0.50
0.25 | 0.161 0.14
3.2 2.6
4.3 3.4
7.3 6.4 | | 0.325 0.295
6.8 5.7
9.1 7.6
12.2 10.4 | 0.405 0.368
7.8 6.6
10.4 8.8
14.6 11.9 | 0.487 0.443
8.5 7.8
11.3 10.4
16.2 14.6 | 0.568 |